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Abstract

We introduce a generalized decision game model which consists of finite number

of types and each type has finite number of homogeneous players. We assume that

each type of player has similar characteristics and will choose only between two

alternative choices (or decisions) D = {d1, d2}. The preference for each type of

players will be described by a discrete utility function which gathers the influence

of players in the same group and the influence of players from the other groups.

We will characterize all pure and mixed strategies that form Nash equilibria. The

pure strategies are either united or separated strategies. The united strategies

ensure that all players with same type will make same decision, while separated

strategy includes at least one type of players who do not make same decision. We

will determine the strategic thresholds for each type that identify the Nash regions

in space. As a special case, we consider a game theoretical model for three types of

homogeneous players. We use geometry to construct three dimensional regions of

Nash equilibria, where the horizontal axis reflects the preference for players of type

one, the vertical axis reflects the preference for the players of type two, and the

depth axis reflects the preferences for the players of type three. We will identify

Nash equilibria for pure and mixed strategies. Finally, we will apply our model in

economics, specifically in the tourist sector. We will introduce a resort model for

three types of tourists and find the Nash Equilibrium prices, for given horizontal

preference for type 1, vertical preference for type 2, and depth preference for type

3.
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Chapter 1

Introduction

Human action is an important field of study in science research (especially so-

cial and economic science), where the famous Professor of Psychology Ajzen has

studied across years the human behaviour theories [1,2,3], which are considered

the most important theories in human actions. Ajzen in 2002 (see [4]) has stud-

ied behavioural control, and clarified how the planned behavior theory became

influential and popular conceptual frameworks for the study of human action. In

this theory Ajzen clarify that players behaviour are driven by three main beliefs

(or factors): first is their thoughts and expectations, second is their expectations

about other’s behaviour and finally is the expectations about external factors.

Briefly, they show how intentions of human turn into behaviours.

Recently, game theory field has become interested topic to study more complex

human behavior using mathematical models and equations, trying to expect the

best decisions that people can make among different available and alternative

choices.

One important application of game theory in real life concerning human decision

models is in economics, mainly in tourism sector. In 2010, Brida et al. (see[5])

introduced a model of tourism choice taking into account the crowding types (the
1



effect of tourists on the decision of each other-demand on resorts), and found

the strategies that achieve Nash Equilibrium. Also, in the same sector, Brida

et al. (see [6]) in 2011, they found that adjustments in the number of tourists

of each crowding type and adjustments in the parameters that characterize the

utility of tourists could in fact modify the Nash Equilibrium allocation. Also, in

”Resort Pricing and Bankruptcy” paper (see [7]) the authors demonstrate that

slight changes in tourist preferences, as well as the preferences of tourists who

like to be with in each resort, can build and destroy competitive business Nash

Equilibrium prices, as well as change bankruptcy Nash Equilibrium prices.

At the same year, Pinto et al. (see [8]) introduced Yes-No decision game for two

types of people using decision tilings. Each decision tiling demonstrates the way

united and separated Nash equilibria co-exist and alter with the relative choice

preferences of the individuals for the yes or no decision model.

In conjunction with previous work, Almeida et al. [9] created a game theoretical

model, inspired by Conley (see [10]) and Wooders [10,11], where it takes into

consideration individual characteristics described as taste type and crowding type

effects. Among a lot of mechanisms to transform human intentions into behaviour,

the paper proposes the Bayesian–Nash equilibrium, and eventually shows what

could lead to split strategies.

In 2014, Mousa et al. [12] introduced a dichotomous decision model where people

has to choose between two decisions (Yes or No), where the choice of people

affected by their preferences and people can influence each other (crowding type).

In their paper, they took two types of people and clarify geometrically in two

dimensions, where the preference of type one is presented on horizontal axis, and

the preference of type two is presented on vertical axis. The authors found the

domains of Nash Equilibruim (pure and mixed) and used geometrically the tilings

to clarify the equilibria.

Another application for game theoretical model of two types of players in the for-

mation of societies is studied in [13], where individuals are characterized according

2



to their main components: personal evaluation component and an interaction com-

ponent. Such components are affected by some externally factors on individuals

behaviours.

Resorting to ”dynamic of human decisions” paper [12], Mousa and Pinto (see [14])

studied two geometric approaches to construct all possible decisions tilings. They

found the Nash domains for the pure and mixed strategies, and they characterize

the space of all parameters where the pure Nash equilibria are either cohesive or

disparate. Eventually, they added a new interest features about the occurrences

of bifurcations between the horizontal and vertical thresholds.

After that, Mousa and Shoman (see [15]) studied in details the analysis of tran-

sition of Nash Equilibria for single type of homogeneous players and identified all

pure and mixed Nash Equilibria.

In 2020, Mousa and Rajab (see [16]) added an interesting feature to Mousa model

introduced in [12] by considering the envy behaviour effect within two types of

players. They studied all pure envy strategies that form Nash Equilibria. Fur-

thermore, they characterize geometrically the preferences for both types of players

along the horizontal and vertical axes. At the same year Hou and You (see [17])

introduced an equilibrium definition for the group decision and examined its re-

lationship with the Nash Equilibrium in game theory. The experts’ preferences

in the group decision situation are represented by preference sequence vectors

(PSVs), and found that the introduced ’group decision equilibrium’ is formally

similar to the Nash Equilibrium described by using such PSV.

Another important application of game theory is in engineering and networks,

where Jizhao and Maojiao (see [18]) studied Nash Equilibrium for different types of

players interacting in a distributed network. They used two methods (algorithms):

the first one is centralized algorithm where player can access its own gradient value,

while the second one is a distributed algorithm where the players are assumed to

have limited access into the other players’ actions.

One of the recent papers which investigates in Game Theory is Dong paper (see

[19]) which shows a comparison between classical game theory and evolutionary

3



game theory which neither requires the participants to be completely rational

and nor requires complete information. They show that classical game theory

deals more with the relative benefits of individual strategy, where evolutionary

game theory deals with strategy changes as evolutionary forces change within a

population over longer time scales.

Recently, an attractive studies in applied game theory according to Covid-19 pan-

demic, where Manchanda et. al. (see [20]) tried to highlight and analyse measures

to prevent the spread of the virus. They studied three games scenarios according

to Covid-19 pandemic payoffs between countries choosing between lock-downs and

not, Battle of the sexes where choosing between going out or stay at home between

couples, and illustrates the vaccinated and unvaccinated people along with their

utilities. The authors in this paper showed how the vaccination drive can help in

combating the virus and secure most individuals from the risk of contamination.

Lockdowns and other preventative measures, such as staying inside the home, can

help in secure millions of people and keep them away from the risk of having

Corona virus.

We organize this Thesis as follows. In Chapter 2 we will review some definitions

which help us understanding basics and proceed in game theory in our thesis. In

Chapter 3, we will introduce the general set up for the model, then we will study

the pure united and pure separated strategies that form Nash equilibria and take

a spacial case for three types of players. After that we study the mixed strategies.

In Chapter 4 we apply our model in tourist sector and take in consideration two

types of resorts and find the Nash Equilibrium prices. We get our conclusion

in chapter 5. In the end, we have four appendices, where the three appendices

(A, B and C) contains additional cases for given Theorems and Lemma, while in

Appendix D, we present a simulation in a special case for three types of players

using Mathematica.
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Chapter 2

Basic Preliminaries

Our purpose in this chapter is to review some basics in game theory that will be

needed through this thesis. For instance, the definition of games, types of games,

and applications of game theory.

2.1 Definition of games

In this section, we specify how to define a game in game theory i.e. key ingredients.

Any game has three important factors or elements [21] as the following

1. The set of players i ∈ I which will be a finite set in this thesis. The decision

makers can be people, government, etc · · · .

2. Actions, what can the players do, or what actions can players actually take?

For example bargaining action, decide whether or not to strike, or decide

whether to fund strike. Or investing action, investor decide how much of a

stock to buy or sell, decide when to sell a stock, how they should react to

other people in market, how they should behave when prices change. These

choices give us the strategy space Si for each player i ∈ I.

5



3. Payoff functions πi that gives player i’s Von Neuman-Morgenstern utility

πi(S) based on the strategy S ∈ Si. This is what motivates players to select

certain strategy and not the others.

2.2 Concepts in game theory

Referring to the textbook of Watson [22], some questions were raised. For example,

in a given game:

• Does the winner or looser exist?

• Is there any kind of cooperation between players?

• Is the game considered to be competitive? aggressive?

See next example of a game where conflict and cooperation are considered.

Example 2.1. [22] Contract problem

Assume there are a contract problem between a worker and his employer. May

be there is a need to negotiate a wage contract to produce an economical product.

Despite a conflict between parties on wage, there are also common interests in

other dimensions. In some situations, like exceptional achievements, both parties

may prefer to conclude a bonus in the contract, which may give the worker an

excellent incentive to make a profit.

Keep in mind that conflict and cooperation overlap as in Watson textbook [22]

Game theory is a methodology of formally studying situations of interdependence.

In this book the author explains game theory formally using a mathematically

precise and logically consistent structure. With the proper theoretical tools in

place, we can study behavior in various contexts and better understand economic

and, more generally, social interaction.

As mentioned in [23], a game is played whenever people interact in different fields,

including life situations. For example, a car driver playing a game with other car

drivers on a busy city street. Also, Napoleon and Wellington were playing a game

at the Battle of Waterloo.
6



Ken [23] clarify that game theory as a discipline began with the publication of

Von Neumann and Morgenstern’s book, The Theory of Games and Economic

Behavior, in 1944. Game theory became more popular after ”A Beautiful Mind”

movie, which talks about the life of ”John Nash”, a mathematician famous who

won the Nobel Prize in Economics and made fundamental changes in game theory

since 1950’s.

In most societies, people interact constantly where Watson [22] show that their

interaction either cooperative interaction or competitive interaction (like two firms

fighting for market share). And Ken [23] simplify how the game theory aims to in-

vestigate how rational people should interact when they have conflicting interests,

i.e. it is mostly about what happens when people interact in a rational manner.

Game theory is the mathematical modeling of strategic interaction among rational

(and irrational) agents.

So, we can say in general, game theory is a way of thinking about strategic inter-

actions between self-interested people. Self-interested can be measured by utility

and preferences for a player who aims to maximize such expected or average utility.

2.3 Types of games

In this section we explain the types of games in game theory. Each type of games

help to analyze various kind of problems or games.

2.3.1 Cooperative game

Definition 2.1. [24] Cooperative game theory refers to an abstract and axiomatic

analyses of bargains or behaviors that players might reach, without explicitly mod-

eling the processes. The name “cooperative” derives in part from the fact that the

analyses often incorporate coalitional considerations.

As an example of cooperative game: a group of people together are caring out a

certain project, so they cooperate between their decisions at every step.

7



The phrase “cooperative” might be ambiguous [25]. It does not imply that each

agent is agreeable and will obey arbitrary instructions. Instead, it indicates that

the fundamental modeling unit is the group rather than the individual agent. More

exactly, in cooperative game theory we still describe the individual preference of

agents, but not their probable actions. Instead, we have a coarser model of the

capacities of distinct groups.

Example 2.2. [25](Voting game)

This is an example on cooperative game, let there are four political parties, pp1, pp2,

pp3, and pp4, each with 45, 25, 15, and 15 representatives respectively, make up a

parliament. A $100 million spending bill is up for a vote, along with how much of

it should be controlled by each party. Any legislation must receive a majority vote,

or at least 51 votes, to pass; otherwise, each party gets zero to spend.

2.3.2 Non-cooperative game

Definition 2.2. [24] Non-cooperative game theory describes models in which play-

ers’ actions are directly modeled, assuming they will act selfishly. Watson [22]

clarify that in this type, the framework treats every action taken by an agent as

an independent action. A person decides on an individual behavior based on his

or her preferences, independent of the other players in the strategic environment.

In a non-cooperative game, the players decide on their own strategy to maximize

their profit. As a result, non-cooperative game theory is more common and used

than cooperative games. And our work in this thesis falls under this kind of game.

Leyton [25] argued that the word “non-cooperative” might be deceptive as it may

infer that the theory applies primarily to circumstances in which the interests of

distinct agents conflict.

Leyton [25] also simplify the essential difference between the types is that the

basic modeling unit in non-cooperative game theory is the individual (including

his beliefs, preferences, and possible actions). In contrast, the group is the primary

modeling unit in coalitional game theory.
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Jack [24] clarify that the theory of non-cooperative games is more fundamental

than that of cooperative games. It requests a detailed description of the game’s

rules so that the strategies available to the players can be studied in depth. The

goal is then to identify a suitable pair of equilibrium strategies to label as the

game’s solution. On the other hand, cooperative game theory takes a more free-

wheeling attitude. It concerns situations in which players can agree on what to do

in the game before it begins. Furthermore, it is assumed that these negotiations

will end with the signing of a binding agreement. It is argued that the precise

strategies available in the game will not matter very much under these conditions.

The game’s preference structure matters because it determines which contracts

are feasible.

In general, one have to be careful in considering a model that describes the game;

where if the model is too simple, it may miss crucial parts of the actual games

that one want to study. And if the model is overly sophisticated, it may obstruct

analytics by overshadowing key factors.

We will represent in the following the two most important forms (or representa-

tive) of Non-cooperative game, which are the extensive form and the strategic (or

normal) form.

2.3.2.1 Normal form

Definition 2.3. [26] The strategic form is a simpler way to represent a game. To

describe a game in strategic form, we only need to identify the set of players in

the game, the set of options accessible to each player, and how players’ payoffs are

determined by the alternatives they decide.

So, this kind of representation (which called also strategic form) consist of (as it

is described in [25])

• A finite set of players say I = {1, 2, · · · , n}, and a player i ∈ I.

• Strategy space S = (S1 × S2 × · · · × Sn), where Si is a finite set of actions

(strategies) available to player i. Each vector. s = (s1, s2, · · · , sn) ∈ S is

9



called an action profile (strategy).

• π = (π1, π2, · · · , πn), where πi : S −→ R is payoff (a real-valued utility)

function for player i. All players aims to choose a strategy that maximize

their utilities.

Normal (strategic) form represented usually by a table. One of the most common

example for non-cooperative game in strategic form is the ”Prisoners’ dilemma”.

See the following example.

Example 2.3. Prisoner’s dilemma [24]

This is a very common and simple example of representation a game in normal

form. Here the players are two prisoners. The game is presented in Table 2.1, each

player has to choose between cooperate (C) or defect (D). The first entry indicates

the payoff to player 1 as a function of the pair of actions, while the second entry

is the payoff for player 2.

Table 2.1: A Prisoners’ Dilemma Game.

Player 1
Player 2

C D

C -1,-1 -3,0
D 0,-3 -2,-2

The typical explanation for the payoffs in the prisoners’ dilemma is as follows.

The two players committed a crime and are now being held in different rooms

in a police station. The prosecutor has approached each of them and informed

them individually: “I will let you go if you confess and agree to testify against the

other player, and the other player does not confess. If you both confess, I shall

sentence you both to two years in prison. If you do not confess and the other

player does, you will be found guilty and sentenced to three years in jail. If no

one confesses, I will charge you with a lesser crime for which we have enough

evidence to prosecute you, and you will each serve a year in jail.” As a result, the

payoffs in the matrix indicate time spent in prison in terms of years. The phrase

cooperate refers to cooperating with the other player. The phrase defect relates to

admitting and agreeing to testify, which violates the (implicit) agreement with the

other player.
10



In this game one can see that the Nash Equilibrium strategy for both players is

(D,D). Since the best response for p1 if p2 selects C is D, the best response for

p1 if p2 selects D is D, and the best response for p2 if p1 selects C is D, the

best response for p2 if p1 selects D is D. Note also that in this game the Nash

Equilibrium strategy (D,D) is not the best for both players since (C,C) dominates

(D,D). However, each player does not know or he/she is not sure if the other

player will select C, so they end up playing (D,D) although it is bad strategy for

both.

The other form of representing a non-cooperative game is the extensive form,

which representing as a tree.

2.3.2.2 Extensive form (or Tree form)

In this kind of forms, we pay attention for two additional factors which are timing

and information. We have here a set of players who select their strategies sequen-

tially to form a tree, this tree consists of nodes and branches. The payoffs for each

player representing at each end node.

Definition 2.4. The extensive form is the most richly structured way to describe

game situations as mentioned in Reger book [26]. Rebert [27] clarified that this

form details the game’s players, when each player has the opportunity to make a

move, what each player can do at that time, what each player is aware of at that

time, and the payoff each player will get for each possible move combination. In-

formally, Leyton [25] defined a perfect-information game as a tree in the sense of

graph theory, where each node represents one of the players’ option, each edge rep-

resents a potential action, and the leaves represent ultimate outcomes over which

each player has utility or preference.

Note that the game can be

1. Game with perfect information which means that each player observes the

strategy being selected by the other player. In this kind of games all branches

are solid and complete.

11
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Figure 2.1: The sharing game.

2. Game with imperfect information which means that at least one of players

does not observe what the other player has played previously. Such imperfect

information games are represented by dash line in the tree.

The extensive form representation of a game specifies by Robert [27]

• The set of players in the game: the player who plays first starts at initial

node.

• Strategy space for each player described by the branches.

• The payoff received by each player appear in the end of the tree.

Example 2.4. [25] Suppose two siblings, a brother and a sister, are tasked with

dividing up two identical gifts from their parents. Initially, the brother proposes

a three-way division: either he retains both, she retains both, or they both retain

one. The sister may then decide whether or not to accept the separation. If she

agrees, they will get their respective gift(s); if not, neither will get anything. The

game’s tree structure is shown in Figure 2.1 under the assumption that the two

gifts are of equal and additive value to each sibling.

Note that the strategy space for player one in example 2.4 is

S1 = {offer 1, offer 2, offer 3},
12
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Figure 2.2: A basic entry deterrence game.

while the strategy space for player two

S2 = {yes, no}.

In this example, we know that player one plays first and player two plays next after

observing player’s one action. Therefore, this is an example with complete infor-

mation. Note also that this is an example with more than one Nash Equilibrium.

That is (offer 1, yes), (offer 2, yes) and (offer 3, yes) are all Nash equilibria.

See the following extensive form as another example of non-cooperative game.

Example 2.5. Companies fighting [28]

In this example, we have two players (companies), see Figure 2.2. First is a poten-

tial industry entrant and take the symbol T and the second is industry incumbent

take the symbol I. First company has two choices (actions), either to enter the

industry (E) or stay out (O). After industry entrant choose, it became incumbent

turn. If company T decide to stay out, there is no decision for company I, since

the game terminated, and the payoffs for these companies are (0,35) for company

T and I, respectively. If firm T decides to enter the market, then firm I has

to choose between fighting (F)-launch a price war, which gives (-1,-1) payoffs for

company T and I, respectively. Or, it decide to accommodate (A)- don’t launch

a price war, which gives (15,15) payoffs for company T and I, respectively. So,

as we saw in this example, the decision of second player depends on the history of

information taken by company one, which appear clearly how it depends on timing

and information.
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Note that from Example 2.5, the strategy space for the first company is

{E,O},

while the strategy space for the second company is

{F,A}.

In this market, the first company knows that if it decides E then the second

company will decides A since A offers more payoff than F . Hence the first company

ends having payoff 15 by deciding E, while if it decides O, it will get nothing.

Therefore, the first company keeps deciding E and the second company keeps

deciding A and the strategy profile (E,A) is the only Nash Equilibrium.

2.4 Strategy space

In game theory, strategy is an essential notion that may be defined as follows.

Definition 2.5. [22] A strategy is a complete contingent plan for a player in the

game.

This is was also defined in Robert’s work [27]. A player’s strategy is a compre-

hensive action plan that outlines a possible action for the player in any situation

in which the player may be required to perform..

Watson [22] clarified the concept of “complete contingent” in the preceding def-

inition by providing a detailed description of a player’s conduct at each of his

potential choice points. A player’s strategy specifies what he will do at each of his

data, since data sets represent positions in the game when players make choices.

One kind of strategy is to choose a single action and play it with certainty. We

refer to such a strategy as a pure strategy see [25], and will describe it using the

notation we’ve previously defined for actions. According to Jack [24], the word

“pure” refers to strategies in which a single action is chosen, as opposed to “mixed”

strategies in which actions are randomized.
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2.5 Best response

Another important concept in game theory is the player’s belief about other play-

ers, where the players think about choices and strategies for each other player in

the game. So, we can define a belief as following.

Definition 2.6. [21] ∆S−i is the set of probability distributions over the strategies

of all players except player i.

Definition 2.7. [21] A belief of player i ∈ I is a probability distribution θ−i ∈

∆S−i over the strategies of the other players.

Now we will define another kind of strategies (rather than the pure strategy),

which called ”mixed strategy”.

Definition 2.8. (Mixed strategy) [22]

A mixed strategy for a player i is the act of selecting a strategy according to a

probability distribution. A mixed strategy of player i can be denoted by σi ∈ ∆Si.

If player i has a belief θ−i about the strategies of the others and decide to select

strategy si, then his expected payoff is

πi(si, θ−i) =
∑

s−i∈S−i

θ−i(s−i)πi(si, s−i).

So, we can say that a mixed strategy and a belief are both probability distributions.

The difference underlines in the fact that the mixed strategy for player i ∈ I is

a probability distribution over his/her strategy space, while the belief of player

i ∈ I is probability distribution over the strategy space of the other players. Also,

note that the set of mixed strategies includes the set of pure strategies, i.e. a pure

strategy is a special case of a mixed strategy.

Definition 2.9. [25] Player i’s best response to the strategy profile s−i played by

the other players is a mixed strategy s∗i ∈ Si such that πi(s
∗
i , s−i) ≥ πi(si, s−i) for

all strategies si ∈ Si.
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Best response isn’t always unique. When a best response s∗ involves two or more

actions, the agent must be indifferent between them; otherwise, the agent would

prefer to eliminate at least one action. Any blend of these acts is a best response,

not only s∗. If two pure strategies are individually best responses, any blend of

them is also best response. A player won’t know the other players’ strategy. As a

result, the notion of best response is not a solution concept—it does not identify

an interesting set of outcomes in this general case. However, we may use the

concept of best response to establish what is probably the most essential concept

in non-cooperative game theory: the Nash equilibrium.

2.6 Dominance

[25] We shall identify what it means for one strategy to dominate another. In-

tuitively, one strategy dominates another for a player i if the first strategy gives

i a larger payoff than the second strategy, regardless of how the other players

are playing. There are, however, three different levels of dominance, which are

described in the following definitions.

Definition 2.10. [25] Let si and s′i be two strategies of player i, and S−i the set

of all strategy profiles of the remaining players. Then

si strictly dominates s′i if for all s−i ∈ S−i, we have

πi(si, s−i) > πi(s
′
i, s−i).

If one strategy dominates all others, we say that it is strongly dominant.

Definition 2.11. [25] A player’s strategy is strictly dominant if strictly dominates

all other strategies for that player, and call it dominant strategy.

Keep in mind that a strategy profile (s1, · · · , sn) is a Nash equilibrium if every si

is dominant for player i. This kind of strategy profile is called an equilibrium in

dominant (strictly) strategies. When there are strictly dominant strategies, then

the equilibrium is the only possible Nash equilibrium.

Take, for instance, another look at the game known as ”Prisoner’s Dilemma” (see
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Table 2.1). Whether player 1 chooses to play strategy C or D, player 2 will choose

to play strategy D. And whether player 2 chooses to play strategy C or D, player

1 will choose to play strategy D. Therefore, the strategy D is strictly dominant

for each player, and indeed (D,D) is the only Nash equilibrium.

In game theory, games with dominant strategies play a significant role. Next we

will define the dominated strategy.

Definition 2.12. [25] A strategy si for player i ∈ I is strictly dominated if some

other strategy s′i strictly dominates si.

All strictly dominated pure strategies should be avoided, since they can never be

best responses to what the other players do. When a pure strategy is eliminated,

a different strategy that was not dominated can become dominated. So, this

process of elimination can go on. Then, a pure strategy might be dominated by a

combination of other pure strategies without being dominated independently by

any of them. Take a look at the game in Table 2.2 for further clarification.

Table 2.2: A game with dominated strategies.

Player 1
Player 2

L C R

U 3,1 0,1 0,0
M 1,1 1,1 5,0
D 0,1 4,1 0,0

Column R, which is dominated by column L, can be eliminated for player 2. Table

2.3 shows the simplified version of the game that remains.

Table 2.3: Reduced game in Table 2.2 after removing the dominated strategy
R.

Player 1
Player 2

L C

U 3,1 0,1
M 1,1 1,1
D 0,1 4,1

Neither U nor D can dominates M in this game, but the mixed strategy that

chooses either U or D with equal probability does. (Remember that it was not

dominated before the R column was eliminated). This leaves us with the most

simplified game shown in Table 2.4.
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Table 2.4: Reduced game in Table 2.3 after removing the dominated strategy
M.

Player 1
Player 2

L C

U 3,1 0,1
D 0,1 4,1

This provides us with a solution concept: the set of all strategy profiles, each of

which assigns zero probability to choose any action that would be eliminated via

iterative elimination of strictly dominated strategies. Take into account that the

strength of this solution notion is substantially weaker than than Nash equilibrium.

Several many other mixed strategies might be part of the solution.

2.7 Nash Equilibrium

Definition 2.13. [24] Nash Equilibruim strategy

A Nash equilibrium strategy is a profile of strategies such that each player’s strategy

is a best response (results in the highest available payoff) against all other strategies

of the other players. That is, a strategy ai is a best response of player i if

πi(ai, a−i) ≥ πi(a
′
i, a−i).

Example 2.6. Consider the strategic form game represented in Table 2.5. First,

Table 2.5: A strategic game.

Player 1
Player 2

X Y Z

U 2,0 1,1 4,2
M 3,4 1,2 2,3
D 1,3 0,2 3,0

we can see that strategy D for player 1 is dominated by strategy U. And hence, strat-

egy Y will be dominated by strategy Z. Therefore, the set {(U,X), (U,Z), (M,X),

(M,Z)} contains the rationalizable strategies.

To find NE strategies, we need to find best response for each player. If player 2

choose action X, then the best response for player 1 is M, since it has the highest

pay off with 3. If player 2 choose action Y, then the best response for player 1

is U and M, since they have the same highest pay off with 1. If player 2 choose
18



action Z, then the best response for player 1 is U, since it has the highest pay off

with 4.

Now, we need to find best response for player 2 with respect to each action of player

1. If player 1 choose U, then the best response for player 2 is Z, since it has the

highest payoff with 2. If player 1 choose M, then the best response for player 2 is

X, since it has the highest payoff with 4. If player 1 choose strategy D, then the

best response for player 2 is X, since it has the highest payoff with 3.

So, the Nash equilibria strategies are (U,Z) and (M,X) for this game. Whereas

the strategies {(U,X), (M,Z)} are rationalizable strategies but not Nash equilibria.
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Chapter 3

Decision game model with

interactions between multiple

types of players

In this chapter, we extend work done by Mousa et al. introduced in [12] by gen-

eralizing a dichotomous decision model for multiple type of homogeneous player,

who can choose only between two alternatives choices. We will study pure (united

and separated) and mixed strategies that form Nash equilibria.

3.1 Model setup

In this section, we will formulate general game theory decision model for multiple

type of homogeneous player, who can choose only between two alternatives choices.

We will study pure (united and separated) and mixed strategies that form Nash

equilibria.

Definition 3.1. A group of m-players in any games are called homogeneous, if

they have the same characteristics and the same preferences.
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Let T = {t1, t2, · · · , tn} be set with n−types of homogeneous players. Each type

tk has mk players, where k ∈ {1, · · · , n}.

Let:

I1 = {1, · · · ,m1} be the set of all players with type t1.

I2 = {1, · · · ,m2} be the set of all players with type t2.

...

In = {1, · · · ,mn}be the set of all players with type tn.

Definition 3.2. The disjoint union of I1, I2, · · · , In is defined by

I = I1 ⊔ I2 ⊔ · · · ⊔ In,

where

I = {i = (i1, i2, · · · , in) ∈ Rn : ik ∈ Ik, k ∈ {1, · · · , n}}. (3.1)

Each player ik ∈ Ik is assumed to make one decision d ∈ D = {d1, d2}.

Let Ωd ∈ Rn be the preference decision vector whose coordinates ωd
k indicate how

much player with type tk likes or dislikes to make decision d ∈ D. So, Ωd indicates

the taste type of players defined by

Ωd =



ωd
1

ωd
2

...

ωd
n


∈ Rn, d ∈ {d1, d2}.

Since the game consists of homogeneous players, it follows that ωd
k is the same for

all players of the same type tk where k ∈ {1, · · · , n}.
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Let Ad ∈ Rn×n be the preference neighbors matrix (crowding matrix) whose

coordinates αd
kj ∈ R indicate how much player with type tk likes or dislikes that

player with type tj makes decision d ∈ D. So, Ad indicates crowding type of

players defined by

Ad =



αd
11 αd

12 · · · αd
1n

αd
21 αd

22 · · · αd
2n

...
...

...

αd
n1 αd

n2 · · · αd
nn


∈ Rn×n.

Let S be the space of all strategies S ∈ S, where S is defined by

S = (S1, S2, · · · , Sk−1, Sk, Sk+1, · · · , Sn), (3.2)

where the pure decision of the players of type tk is described by a pure strategy

map

Sk : Ik −→ D, k = 1, 2, · · · , n, (3.3)

that associates to each player ik ∈ Ik its decision S(ik) ∈ D.

Given a strategy S, let OS be the strategic decision vector in Rn whose coordi-

nates ldk = ldk(S) indicate the number of players with type tk who make decision d.

So, OS is defined by:

OS =



ld11

ld12
...

ld1n


∈ Rn

We denote by (l1, l2, · · · , ln) = (ld11 (S), ld12 (S), · · · , ld1n (S)) the strategic decision

vector associated with strategy S, where lk (resp. mk− lk) is the number of player

with type tk who makes decision d1 (resp. d2) where k ∈ {1, · · · , n}. That is:
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OS =



ld11

ld12
...

ld1n


=



l1

l2
...

ln


and so



ld21

ld22
...

ld2n


=



m1 − l1

m2 − l2
...

mn − ln


.

Lemma 3.3. The number of all possible pure strategies is

n∏
k=1

(mk + 1),

where n is the number of types and mk is the number of homogeneous players of

type tk.

Proof. Since the model has n homogeneous types and each type tk has mk players,

it follows that the set of all possible strategic decision vector is given by the

Cartesian product of sets:

O = {0, 1, · · · ,m1} × {0, 1, · · · ,m2} × · · · × {0, 1, · · · ,mn}. (3.4)

Hence, the number of all possible pure strategies now is the combination

(m1 + 1).(m2 + 1). · · · .(mn + 1) =
n∏

k=1

(mk + 1),

which complete the proof.

Definition 3.4. Let ϵk(d) be the variation in the utility of players of type k who

makes decision d ∈ D.

Now, we need to define the corresponding utility functions. Let Πk : D×O −→ R

be the utility function of any player with type tk who make decision d1 is defined

by:

Πk(d1; l1, l2, · · · , ln) = ωd1
k + αd1

k1l1 + αd1
k2l2 + · · ·+ αd1

kk−1lk−1 + αd1
kk(lk − 1)

+αd1
kk+1lk+1 + · · ·+ αd1

knln + ϵk(d1), (3.5)
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and let Πk : D ×O −→ R be the utility function of any player with type tk who

make decision d2 is defined by:

Πk(d2; l1, l2, · · · , ln) = ωd2
k + αd2

k1(m1 − l1) + αd2
k2(m2 − l2) + · · ·

+αd2
kk−1(mk−1 − lk−1) + αd2

kk(mk − lk − 1) (3.6)

+αd2
kk+1(mk+1 − lk+1) + · · ·+ αd2

kn(mn − ln) + ϵk(d2),

where k ∈ {1, · · · , n} is the player type.

So, the utility is affected by two main factors: First, is the taste type represented

by ωd
k, which shows how much this player like to make decision d (i.e. the more

a player desires to make decision d, the more utility the player will has related to

this decision). Second is the crowding type represented by αd
kj, which shows how

much player of type tk like or dislike to be with players of type tj make decision

d multiplies by the number of players whose made decision d.

Definition 3.5. Let xk = ωd1
k −ωd2

k be the relative decision preference of the player

with type tk, where k ∈ {1, · · · , n}.

The relative decision preferences describe the taste preferences for each player

independently from the influence of the other players.

• If xk > 0, then player of type tk prefers to decide d1 without taking into

account the influence of the others.

• If xk = 0, then player of type tk is indifferent to decide d1 or d2 without

taking into account the influence of the others.

• If xk < 0, then player of type tk prefers to decide d2 without taking into

account the influence of the others.

Let

X = {x ∈ Rn : x = (x1, x2 · · · , xn)},
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be the set of all vectors of relative decision preferences.

Note that for a given strategy S ∈ S, the utility function Πik(S) of player ik with

type tk is given by

Πk(S(ik); l
S(ik)
1 (S), · · · , lS(ik)n (S)),

where S(ik) ∈ {d1, d2}.

Definition 3.6. Let S∗ = (S∗
1 , S

∗
2 , · · · , S∗

k , · · · , S∗
n), where S∗

k : Ik −→ D.

A strategy S∗ is a (pure) Nash Equilibrium iff

Πik(S
∗(ik); l

S∗(ik)
1 (S∗), l

S∗(ik)
2 (S∗), · · · , lS

∗(ik)
n (S∗)) ≥

Πik(S(ik); l
S(ik)
1 (S), l

S(ik)
2 (S), · · · , lS(ik)n (S))

for every player ik ∈ Ik with type k ∈ {1, 2, · · · , n} and for every strategy S ∈ S.

For every player ik ∈ Ik and for every strategy S ∈ S. The Nash region NR(S)

of a strategy S ∈ S is the set of all preferences x = (x1, x2, · · · , xn) ∈ Rn for which

S is a Nash Equilibrium.

3.2 United Nash equilibria

In this section, we will characterize the united strategies that are Nash equilibria

and we will characterize its Nash equilibria regions.

Definition 3.7. A united strategy SU = (S1, S2, · · · , Sn) is a strategy in which all

players with the same type prefer to make the same decision, where

Sk : Ik −→ d1 for all ik ∈ Ik or

Sk : Ik −→ d2 for all ik ∈ Ik,

i.e. lk ∈ {0,mk} where k ∈ {1, · · · , n}.

In other words, under the united strategy SU , we have SU(ik) = d1 for each player

i with type tk or SU(ik) = d2 for each player i with type tk.
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Definition 3.8. Let Sn
U be the space of all united strategies SU defined by the

Cartesian product Sn
U = {0,m1} × {0,m2} × · · · × {0,mn}.

So, we can define OSU
as the strategic decision vector associated with united

strategy SU , by

OSU
=



l1

l2
...

ln


wherelk ∈ {0,mk}. (3.7)

Lemma 3.9. The number of united strategies is 2n, where n is the number of

types.

Proof. By Induction. Let Sn
U be the space of all united strategies SU .

If n = 1 =⇒ SU(i1) ∈ {d1, d2} =⇒ ld1 ∈ {0,m1}, for d ∈ D}

=⇒ S1
U = {0,m1}

=⇒ |S1
U | = 2 = 21.

Assume it is true for n− 11 =⇒ |Sn−1
U | = 2n−1. We need to show it is true for n.

Note that

Sn−1
U = {0,m1} × {0,m2} × · · · × {0,mn−1},

=
{
(0, 0, · · · , 0) ∈ Rn−1, · · · , (m1,m2, · · · ,mn−1) ∈ Rn−1

}
,

1See the appendix A for cases of two types and three types
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with |Sn−1
U | = 2n−1.

Now, let

Sn
U = Sn−1

U × {0,mn},

=
{(0, 0, · · · , 0, 0) ∈ Rn, · · · , (m1,m2, · · · ,mn−1, 0) ∈ Rn,

(0, 0, · · · , 0,mn) ∈ Rn, · · · , (m1,m2, · · · ,mn−1,mn) ∈ Rn}.
.

(3.8)

Clearly Sn−1
U = 2n−1 + 2n−1 = 2.2n−1 = 2n.

We will represent a general form for Nash region and strategic thresholds of united

strategies for n-types of players in two decision game.

Definition 3.10. Given a united strategy SU . Let

N1 be the set of all types of players tk who decide d1 (lk = mk),

N2 be the set of all types of players tk who decide d2 (lk = 0).

Note that under strategy SU we have,

N1 ∩N2 = ϕ and ∥N1∥+ ∥N2∥ = n.

Given SU ∈ Sn
U . The corresponding strategic decision vector is

OT
SU

= (l1, l2, · · · , ln) ∈ Rn as given in (3.7).

If players with type tk make decision d1, then this means

Πk(d1; l1, l2, · · · ,mk, · · · , ln) ≥ Πk(d2; l1, l2, · · · ,mk − 1, · · · , ln), (3.9)

while if this type make decision d2, then this means

Πk(d2; l1, l2, · · · , 0, · · · , ln) ≥ Πk(d1; l1, l2, · · · , 1, · · · ln). (3.10)
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If (3.9) and (3.10) hold for all types, then SU is Nash Equilibrium.

Remark 3.11. We must note that when we say given strategy SU ∈ S is equivalent

to say given a certain distribution of players over the two decisions. That is, given

SU ∈ S, this means that the strategic decision vector OT
SU

= (l1, l2, · · · , ln) ∈ Rn

is given. In this sense, sometimes instead of talking about S we may talk about

OT
SU

and we simply write

SU = (l1, l2, · · · , ln).

Theorem 3.12. Given SU ∈ Sn
U . The united strategy SU = (l1, l2, · · · , ln) ∈ Rn is

NE iff the following relative decision preference xk of player with type tk holds for

all k = 1, 2, · · · , n.

xk = ωd1
k −ωd2

k ≥ −αd1
kk(mk−1)−

∑
j∈N1,j ̸=k

αd1
kjmj+

∑
j∈N2

αd2
kjmj+ϵk(d2)−ϵk(d1), k ∈ N1,

xk = ωd1
k −ωd2

k ≤ −
∑
j∈N1

αd1
kjmj+

∑
j∈N2,j ̸=k

αd2
kjmj+αd2

kk(mk−1)+ϵk(d2)−ϵk(d1), k ∈ N2,

where the sets N1 and N2 are as given in Definition 3.10.

Moreover the united strategic thresholds of SU strategy are given by

Xk(l1, · · · , lk−1,mk, lk+1, · · · , ln) = −αd1
kk(mk − 1)−

∑
j∈N1,j ̸=k

αd1
kjmj +

∑
j∈N2

αd2
kjmj

+ϵk(d2)− ϵk(d1), if k ∈ N1, (3.11)

and

Xk(l1, · · · , lk−1, 0, lk+1 · · · , ln) = −
∑
j∈N1

αd1
kjmj +

∑
j∈N2,j ̸=k

αd2
kjmj + αd2

kk(mk − 1)

+ϵk(d2)− ϵk(d1), if k ∈ N2. (3.12)
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Proof. By Induction. Given a united strategy SU = (l1, l2, · · · , ln) ∈ Rn.

If n = 1 =⇒ SU = (l1) and l1 ∈ {0,m1}

if l1 = m1 then the players of type t1 make decision d1 iff

Π1(d1,m1) ≥ Π1(d2,m1 − 1);

substituting the values of the utility from (3.5) and (3.6)

and rearrange terms, we get

x1 ≥ −αd1
11(m1 − 1) + ϵ1(d2)− ϵ1(d1)

using (3.11), one can show that

−αd1
11(m1 − 1) + ϵ1(d2)− ϵ1(d1) = X1(m1)

Hence, x1 ≥ X1(m1).

and if l1 = 0 then the players of type t1 make decision d2 iff

Π1(d2, 0) ≥ Π1(d1, 1);

substituting the values of the utility from (3.5) and (3.6)

and rearrange terms, we get

then x1 ≤ αd2
11(m1 − 1).

using (3.12), one can show that

αd2
11(m1 − 1) + ϵ1(d2)− ϵ1(d1) = X1(0).

Hence, x1 ≤ X1(0).

Assume it is true for n− 12, i.e. the united strategy SU = (l1, l2, · · · , ln−1) ∈ Rn−1

is NE iff xk satisfy the following inequalities for all k ∈ {1, 2, · · · , n− 1}

xk ≥ −αd1
kk(mk − 1)−

∑
j∈N1,j ̸=k

αd1
kjmj +

∑
j∈N2

αd2
kjmj + ϵk(d2)− ϵk(d1), if k ∈ N1,

2See Appendix B to clarify more the case of two types and three types of players.
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and

xk ≤ −
∑
j∈N1

αd1
kjmj +

∑
j∈N2,j ̸=k

αd2
kjmj + αd2

kk(mk − 1) + ϵk(d2)− ϵk(d1), if k ∈ N2.

Now, we need to show it is true for all n, so we have two main cases:

Case 1: If players of type tk make decision d1, i.e. k ∈ N1, then

Πk(d1; l1, l2, · · · ,mk, · · · , ln−1, ln) ≥ Πk(d2; l1, l2, · · · ,mk − 1, · · · , ln−1, ln).

Substituting the utilities (3.5) and (3.6) in the previous inequalities, we get

ωd1
k + αd1

k1l1 + αd1
k2l2 + · · ·+ αd1

kk(mk − 1) + · · ·+ αd1
knln ≥

ωd2
k + αd2

k1(m1 − l1) + αd2
k2(m2 − l2) + · · ·+ αd2

kk(mk − (mk − 1)− 1) + · · ·

+ αd2
kn(mn − ln) + ϵk(d2)− ϵk(d1),

which in other way can be written as

Πk(d1; l1, l2, · · · ,mk, · · · , ln−1) + αd1
knln ≥

Πk(d2; l1, l2, · · · ,mk − 1, · · · , ln−1) + αd2
kn(mn − ln).

Using Definition 3.5 for xk we get the following inequality

xk ≥− αd1
kk(mk − 1)−

∑
j∈N1,j ̸=k

αd1
kjmj +

∑
j∈N2

αd2
kjmj + αd2

kn(mn − ln)− αd1
knln

+ ϵk(d2)− ϵk(d1).

Now, there are two subcases:

Case 1-1: If players of type tn make decision d1 (n ∈ N1), i.e. ln = mn,
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then

xk ≥ −αd1
kk(mk − 1)−

∑
j∈N1,j ̸=k

αd1
kjmj +

∑
j∈N2

αd2
kjmj + αd2

kn(mn −mn)

−αd1
knmn + ϵk(d2)− ϵk(d1)

=⇒ xk ≥ −αd1
kk(mk − 1)−

∑
j∈N1,j ̸=k

αd1
kjmj +

∑
j∈N2

αd2
kjmj + αd2

kn(0)− αd1
knmn

+ϵk(d2)− ϵk(d1)

=⇒ xk ≥ −αd1
kk(mk − 1)−

∑
j∈N1,j ̸=k

αd1
kjmj +

∑
j∈N2

αd2
kjmj

+ϵk(d2)− ϵk(d1) where n ∈ N1

Case 1-2: If players of type tn make decision d2 (n ∈ N2), i.e. ln = 0, then

xk ≥ −αd1
kk(mk − 1)−

∑
j∈N1,j ̸=k

αd1
kjmj +

∑
j∈N2

αd2
kjmj + αd2

kn(mn − 0)

−αd1
kn0 + ϵk(d2)− ϵk(d1)

=⇒ xk ≥ −αd1
kk(mk − 1)−

∑
j∈N1,j ̸=k

αd1
kjmj +

∑
j∈N2

αd2
kjmj + αd2

kn(mn)− 0

+ϵk(d2)− ϵk(d1)

=⇒ xk ≥ −αd1
kk(mk − 1)−

∑
j∈N1,j ̸=k

αd1
kjmj +

∑
j∈N2

αd2
kjmj

+ϵk(d2)− ϵk(d1) where n ∈ N2

Case 2: If players of type tk make decision d2, i.e. k ∈ N2, then

Πk(d1; l1, l2, · · · , lk + 1, · · · , ln−1, ln) ≤ Πk(d2; l1, l2, · · · , lk, · · · , ln−1, ln)

Substituting the utilities (3.5) and (3.6) in the previous inequality, we get

ωd1
k + αd1

k1l1 + αd1
k2l2 + · · ·+ αd1

kk(lk + 1− 1) + · · ·+ αd1
knln ≤

ωd2
k + αd2

k1(m1 − l1) + αd2
k2(m2 − l2) + · · ·+ αd2

kk(mk − lk − 1) + · · ·

+ αd2
kn(mn − ln) + ϵk(d2)− ϵk(d1),
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which in other way can be written as

Πk(d1; l1, l2, · · · , lk + 1, · · · , ln−1) + αd1
knln ≤

Πk(d2; l1, l2, · · · , lk, · · · , ln−1) + αd2
kn(mn − ln).

Using the Definition 3.5 of xk we get the following inequality

xk ≤ αd2
kk(mk−1)−

∑
j∈N1

αd1
kjmj+

∑
j∈N2,j ̸=k

αd2
kjmj−αd1

knln+αd2
kn(mn−ln)+ϵk(d2)−ϵk(d1).

Now, there are two subcases:

Case 2-1: If players of type tn make decision d1 (n ∈ N1), i.e. ln = mn,

then

xk ≤ αd2
kk(mk − 1)−

∑
j∈N1

αd1
kjmj +

∑
j∈N2,j ̸=k

αd2
kjmj − αd1

knmn

+αd2
kn(mn −mn) + ϵk(d2)− ϵk(d1)

=⇒ xk ≤ αd2
kk(mk − 1)−

∑
j∈N1

αd1
kjmj +

∑
j∈N2,j ̸=k

αd2
kjmj − αd1

knmn + 0

+ϵk(d2)− ϵk(d1)

=⇒ xk ≤ αd2
kk(mk − 1)−

∑
j∈N1

αd1
kjmj +

∑
j∈N2,j ̸=k

αd2
kjmj

+ϵk(d2)− ϵk(d1) where n ∈ N1

Case 2-2: If players of type tn make decision d2 (n ∈ N2), i.e. ln = 0, then

xk ≤ αd2
kk(mk − 1)−

∑
j∈N1

αd1
kjmj +

∑
j∈N2,j ̸=k

αd2
kjmj − αd1

kn0

+αd2
kn(mn − 0) + ϵk(d2)− ϵk(d1)

=⇒ xk ≤ αd2
kk(mk − 1)−

∑
j∈N1

αd1
kjmj +

∑
j∈N2,j ̸=k

αd2
kjmj − 0 + αd2

knmn

+ϵk(d2)− ϵk(d1)

=⇒ xk ≤ αd2
kk(mk − 1)−

∑
j∈N1

αd1
kjmj +

∑
j∈N2,j ̸=k

αd2
kjmj

+ϵk(d2)− ϵk(d1) where n ∈ N2
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combining the two cases, we conclude that the united stratgy (l1, l2, · · · , ln) ∈ Rn

is NE iff

Xk(l1, · · · , lk−1,mk, lk+1, · · · , ln) = −αd1
kk(mk − 1)−

∑
j∈N1,j ̸=k

αd1
kjmj +

∑
j∈N2

αd2
kjmj

+ϵk(d2)− ϵk(d1), if k ∈ N1,

and

Xk(l1, · · · , lk−1, 0, lk+1 · · · , ln) = −
∑
j∈N1

αd1
kjmj +

∑
j∈N2,j ̸=k

αd2
kjmj + αd2

kk(mk − 1)

+ϵk(d2)− ϵk(d1), if k ∈ N2,

which completes the proof.

Recall that the Nash regionNR(S) of a strategy S ∈ S is the set of all preferences

x = (x1, x2, · · · , xn) ∈ Rn for which S is Nash Equilibrium.

We will represent special case of united strategies for n−types of players in the

following result.

Lemma 3.13. A united strategy (m1,m2, · · · , · · · ,mn) is Nash Equilibrium iff

x ∈ NR(m1,m2, · · · ,mn), where the Nash region NR(m1,m2, · · · ,mn) is given

by

NR(m1,m2, · · · ,mn) = {x ∈ Rn : x1 ≥ X1(m1,m2, · · · ,mn) and

x2 ≥ X2(m1,m2, · · · ,mn) and

...

xn ≥ Xn(m1,m2, · · · ,mn)}.

Proof. Consider the following united strategy: SU(m1,m2, · · · ,mn) ∈ Rn strategy,

where all players of all types make the decision d1. The united strategy SU =
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(m1,m2, · · · ,mn) is NE iff

Π1(d1;m1,m2, · · · ,mn) ≥ Π1(d2;m1 − 1,m2, · · · ,mn) and

Π2(d1;m1,m2, · · · ,mn) ≥ Π2(d2;m1,m2 − 1, · · · ,mn) and (3.13)

...

Πn(d1;m1,m2, · · · ,mn) ≥ Πn(d2;m1,m2, · · · ,mn − 1).

Substituting the utility functions given in (3.5) and (3.6) in inequality (3.13) we

get

ωd1
1 + αd1

11(m1 − 1) + αd1
12m2 + · · ·+ αd1

1nmn + ϵ1(d1) ≥

ωd2
1 + αd2

11(m1 − (m1 − 1)− 1) + αd2
12(m2 −m2) + · · ·+ αd2

1n(mn −mn) + ϵ1(d2) and

ωd1
2 + αd1

21m1 + αd1
22(m2 − 1) + · · ·+ αd1

2nmn + ϵ2(d1) ≥

ωd2
2 + αd2

21(m1 −m1) + αd2
22(m2 − (m2 − 1)− 1) + · · ·+ αd2

2n(mn −mn) + ϵ2(d2) and

... (3.14)

ωd1
n + αd1

n1m1 + αd1
n2m2 + · · ·+ αd1

nn(mn − 1) + ϵn(d1) ≥

ωd2
n + αd2

n1(m1 −m1) + αd2
n2(m2 −m2) + · · ·+ αd2

nn(mn − (mn − 1)− 1) + ϵn(d2).

Rearrange the previous inequalities (3.14) we obtain

ωd1
1 − ωd2

1 ≥ −αd1
11(m1 − 1)− αd1

12m2 − · · · − αd1
1nmn + ϵ1(d2)− ϵ1(d1)

ωd1
2 − ωd2

2 ≥ −αd1
21m1 − αd1

22(m2 − 1)− · · · − αd1
2nmn + ϵ2(d2)− ϵ2(d1)

...

ωd1
n − ωd2

n ≥ −αd1
n1m1 − αd1

n2m2 − · · · − αd1
nn(mn − 1) + ϵn(d2)− ϵn(d1).
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Substituting the values of the relative decisions from Definition 3.5, the last in-

equalities simplifying to

x1 ≥ X1(m1,m2, · · · ,mn) and

x2 ≥ X2(m1,m2, · · · ,mn) and

...

xn ≥ Xn(m1,m2, · · · ,mn),

where the strategic thresholds of the (m1,m2, · · · ,mn) strategy are given, respec-

tively, by

X1(m1,m2, · · · ,mn) = −αd1
11(m1 − 1)− αd1

12m2 − · · · − αd1
1nmn + ϵ1(d2)− ϵ1(d1)

X2(m1,m2, · · · ,mn) = −αd1
21m1 − αd1

22(m2 − 1)− · · · − αd1
2nmn + ϵ2(d2)− ϵ2(d1)

...

Xn(m1,m2, · · · ,mn) = −αd1
n1m1 − αd1

n2m2 − · · · − αd1
nn(mn − 1) + ϵn(d2)− ϵn(d1).

Hence, the corresponding Nash region is

NR(m1,m2, · · · ,mn) = {x ∈ Rn : x1 ≥ X1(m1,m2, · · · ,mn) and

x2 ≥ X2(m1,m2, · · · ,mn) and

...

xn ≥ Xn(m1,m2, · · · ,mn)}.

Note that the Lemma 3.13 characterizes the conditions where all players of all

types agree to make one decision which is d1. In the following result we will study

the opposite extreme case.
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Lemma 3.14. A united strategy SU = (0, 0, · · · , 0) ∈ Rn is Nash Equilibrium iff

x ∈ NR(0, 0, · · · , 0), where the Nash region NR(0, 0, · · · , 0) is given by

NR(0, 0, · · · , 0) = {x ∈ Rn : x1 ≤ X1(0, 0, · · · , 0) and

x2 ≤ X2(0, 0, · · · , 0) and

...

xn ≤ Xn(0, 0, · · · , 0)}.

Proof. Consider the following united strategy: SU = (0, 0, · · · , 0) ∈ Rn strategy,

where all players of all types make the decision d2. The united strategy SU =

(0, 0, · · · , 0) ∈ Rn is NE iff

Π1(d2; 0, 0, · · · , 0) ≥ Π1(d1; 1, 0, · · · , 0) and

Π2(d2; 0, 0, · · · , 0) ≥ Π2(d1; 0, 1, · · · , 0) and (3.15)

...

Πn(d2; 0, 0, · · · , 0) ≥ Πn(d1; 0, 0, · · · , 1).

Substituting the utility functions given in (3.5) and (3.6) in inequality (3.15) we

obtain

ωd2
1 + αd2

11(m1 − 1) + αd2
12(m2 − 0) + · · ·+ αd2

1n(mn − 0) + ϵ1(d2) ≥

ωd1
1 + αd1

11(1− 1) + αd1
12(0) + · · ·+ αd1

1n(0) + ϵ1(d1) and

ωd2
2 + αd2

21(m1 − 0) + αd2
22(m2 − 1) + · · ·+ αd2

2n(mn − 0) + ϵ2(d2) ≥

ωd1
2 + αd1

21(0) + αd1
12(1− 1) + · · ·+ αd1

2n(0) + ϵ2(d1) and

... (3.16)

ωd2
n + αd2

n1(m1 − 0) + αd2
n2(m2 − 0) + · · ·+ αd2

nn(mn − 1) + ϵn(d2) ≥

ωd1
n + αd1

n1(0) + αd1
n2(0) + · · ·+ αd1

nn(1− 1) + ϵn(d1).
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Rearrange the previous inequalities (3.16) we get

ωd1
1 − ωd2

1 ≤ αd2
11(m1 − 1) + αd2

12m2 + · · ·+ αd2
1nmn + ϵ1(d2)− ϵ1(d1) and

ωd1
2 − ωd2

2 ≤ αd2
21m1 + αd2

22(m2 − 1) + · · ·+ αd2
2nmn + ϵ2(d2)− ϵ2(d1) and

...

ωd1
n − ωd2

n ≤ αd2
n1m1 + αd2

n2m2 + · · ·+ αd2
nn(mn − 1) + ϵn(d2)− ϵn(d1).

Substituting the values of the relative decisions from Definition 3.5, the last in-

equalities simplifying to

x1 ≤ X1(0, 0, · · · , 0) and

x2 ≤ X2(0, 0, · · · , 0) and

...

xn ≤ Xn(0, 0, · · · , 0),

where the strategic thresholds of the SU = (0, 0, · · · , 0) strategy are given, respec-

tively, by

X1(0, 0, · · · , 0) = αd2
11(m1 − 1) + αd2

12m2 + · · ·+ αd2
1nmn + ϵ1(d2)− ϵ1(d1) and

X2(0, 0, · · · , 0) = αd2
21m1 + αd2

22(m2 − 1) + · · ·+ αd2
2nmn + ϵ2(d2)− ϵ2(d1) and

...

Xn(0, 0, · · · , 0) = αd2
n1m1 + αd2

n2m2 + · · ·+ αd2
nn(mn − 1) + ϵn(d2)− ϵn(d1).

Hence, the corresponding Nash region is

NR(0, 0, · · · , 0) = {x ∈ Rn : x1 ≤ X1(0, 0, · · · , 0) and

x2 ≤ X2(0, 0, · · · , 0) and

...

xn ≤ Xn(0, 0, · · · , 0)}.
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For more cases, see the appendix C.

3.3 Example for three types of players

In this section we will take a special case for three types of players. We will

construct Nash regions NR(SU) for the united strategy SU ∈ Sn
U and characterize

such Nash regions geometrically. The united Nash regions are shown in Figure 3.1

using the laten numerization for eight octants:

We observe that there are eight (23) united strategies listed as the follows

1. I for 1st octant represents (d1,d1,d1) strategy - all players choose decision d1;

2. II for 2nd octant represents (d2,d1,d1) strategy - all players with type t2 and

t3 choose decision d1 but all players with type t1 choose decision d2;

3. III for 3rd octant represents (d2,d2,d1) strategy - all players with type t3

choose decision d1 but all players with type t1 and t2 choose decision d2;

Figure 3.1: United Nash regions in three dimensions for three types of ho-
mogenous players.
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4. IV for 4th octant represents (d1,d2,d1) strategy - all players with type t1 and

t3 choose decision d1 but all players with type t2 choose decision d2;

5. V for 5th octant represents (d1,d1,d2) strategy - all players with type t1 and

t2 choose decision d1 but all players with type t3 choose decision d2;

6. VI for 6th octant represents (d2,d1,d2) strategy - all players with type t2

choose decision d1 but all players with type t1 and t3 choose decision d2;

7. VII for 7th octant represents (d2,d2,d2) strategy - all players choose decision

d2;

8. VIII for 8th octant represents (d1,d2,d2) strategy - all players with type t1

choose decision d1 but all players with type t2 and t3 choose decision d2.

The united strategy (m1,m2,m3) implies that all individuals of three types make

the decision d1, so we may refer to this strategy by (d1, d1, d1). Also, for sim-

plicity to follow our model we denote to the corresponding horizontal thresh-

old by X(d1, d1, d1), vertical threshold by Y (d1, d1, d1) and depth threshold by

Z(d1, d1, d1). Using Theorem 3.12, these thresholds can be writing as

X(d1, d1, d1) = −αd1
11(m1 − 1)− αd1

12m2 − αd1
13m3 + ϵ1(d2)− ϵ1(d1),

Y (d1, d1, d1) = −αd1
21m1 − αd1

22(m2 − 1)− αd1
23m3 + ϵ2(d2)− ϵ2(d1),

Z(d1, d1, d1) = −αd1
31m1 − αd1

32m2 − αd1
33(m3 − 1) + ϵ3(d2)− ϵ3(d1).

Furthermore, the Nash region NR(d1, d1, d1) includes the first octant I in Figure

3.1 and is given by

NR(d1, d1, d1) = {(x, y, z) ∈ R3 : x ≥ X(d1, d1, d1),

y ≥ Y (d1, d1, d1),

z ≥ Z(d1, d1, d1)}.

Hence, the united strategy (d1, d1, d1) is a Nash equilibrium if and only if (x, y, z) ∈

NR(d1, d1, d1) which is illustrated in Figure 3.2. The code used to generate this
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Figure 3.2: The united Nash equilibria region NR(d1, d1, d1) in space.

figure in Mathematica is shown in Appendix D.

The united strategy (0,m2,m3) implies that all players of type t1 make decision

d2, but all players of types t2 and t3 make the decision d1, so we may refer to

this strategy by (d2, d1, d1). Also, for simplicity to follow our model we denote

to the corresponding horizontal threshold by X(d2, d1, d1), vertical threshold by

Y (d2, d1, d1) and depth threshold by Z(d2, d1, d1). Using Theorem 3.12, these

thresholds can be writing as

X(d2, d1, d1) = αd2
11(m1 − 1)− αd1

12m2 − αd1
13m3 + ϵ1(d2)− ϵ1(d1),

Y (d2, d1, d1) = αd2
21m1 − αd1

22(m2 − 1)− αd1
23m3 + ϵ2(d2)− ϵ2(d1),

Z(d2, d1, d1) = αd2
31m1 − αd1

32m2 − αd1
33(m3 − 1) + ϵ3(d2)− ϵ3(d1).

Furthermore, the Nash region NR(d2, d1, d1) is the second Octant II in Figure

3.1 and is given by

NR(d2, d1, d1) = {(x, y, z) ∈ R3 : x ≤ X(d2, d1, d1),

y ≥ Y (d2, d1, d1),

z ≥ Z(d2, d1, d1)}.
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Figure 3.3: The united Nash equilibria region NR(d2, d1, d1) in space.

Hence, the united strategy (d2, d1, d1) is a Nash equilibrium if and only if (x, y, z) ∈

NR(d2, d1, d1) which is illustrated in Figure 3.3. The code used to generate this

figure in Mathematica is shown in Appendix D.

The united strategy (0, 0,m3) which implies all players of type t1 and t2 make

decision d2, but all players of types t3 make the decision d1, so we may refer to

this strategy by (d2, d2, d1). Also, for simplicity to follow our model we denote

to the corresponding horizontal threshold by X(d2, d2, d1), vertical threshold by

Y (d2, d2, d1) and depth threshold by Z(d2, d2, d1). Using Theorem 3.12, these

thresholds can be writing as

X(d2, d2, d1) = αd2
11(m1 − 1) + αd2

12m2 − αd1
13m3 + ϵ1(d2)− ϵ1(d1),

Y (d2, d2, d1) = αd2
21m1 + αd2

22(m2 − 1)− αd1
23m3 + ϵ2(d2)− ϵ2(d1),

Z(d2, d2, d1) = αd2
31m1 + αd2

32m2 − αd1
33(m3 − 1) + ϵ3(d2)− ϵ3(d1).
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Figure 3.4: The united Nash equilibria region NR(d2, d2, d1) in space.

Furthermore, the Nash region NR(d2, d2, d1) includes the third octant III in

Figure 3.1 and is given by

NR(d2, d2, d1) = {(x, y, z) ∈ R3 : x ≤ X(d2, d2, d1),

y ≤ Y (d2, d2, d1),

z ≥ Z(d2, d2, d1)}.

Hence, the united strategy (d2, d2, d1) is a Nash equilibrium if and only if (x, y, z) ∈

NR(d2, d2, d1) which is illustrated in Figure 3.4. The code used to generate this

figure in Mathematica is shown in Appendix D.

The united strategy (m1, 0,m3) implies that all players of type t1 and t3 make

decision d1, but all players of types t2 make the decision d2, so we may refer to

this strategy by (d1, d2, d1). Also, for simplicity to follow our model we denote

to the corresponding horizontal threshold by X(d1, d2, d1), vertical threshold by

Y (d1, d2, d1) and depth threshold by Z(d1, d2, d1). Using Theorem 3.12, these
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Figure 3.5: The united Nash equilibria region NR(d1, d2, d1) in space.

thresholds can be writing as

X(d1, d2, d1) = −αd1
11(m1 − 1) + αd2

12m2 − αd1
13m3 + ϵ1(d2)− ϵ1(d1),

Y (d1, d2, d1) = −αd1
21m1 + αd2

22(m2 − 1)− αd1
23m3 + ϵ2(d2)− ϵ2(d1),

Z(d1, d2, d1) = −αd1
31m1 + αd2

32m2 − αd1
33(m3 − 1) + ϵ3(d2)− ϵ3(d1).

Furthermore, the Nash region NR(d1, d2, d1) includes the fourth octant IV in

Figure 3.1 and is given by

NR(d1, d2, d1) = {(x, y, z) ∈ R3 : x ≥ X(d1, d2, d1),

y ≤ Y (d1, d2, d1),

z ≥ Z(d1, d2, d1)}.

Hence, the united strategy NR(d1, d2, d1) is a Nash equilibrium if and only if

(x, y, z) ∈ NR(d1, d2, d1) which is illustrated in Figure 3.5. The code used to

generate this figure in Mathematica is shown in Appendix D.

The united strategy (m1,m2, 0) implies that all players of type t1 and t2 makes

the decision d1, but all players of type t3 make the decision d2, so we may refer
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to this strategy by (d1, d1, d2). Also, for simplicity to follow our model we denote

to the Horizontal corresponding threshold by X(d1, d1, d2), vertical threshold by

Y (d1, d1, d2) and depth threshold by Z(d1, d1, d2). Using Theorem 3.12, these

thresholds can be writing as

X(d1, d1, d2) = −αd1
11(m1 − 1)− αd1

12m2 + αd2
13m3 + ϵ1(d2)− ϵ1(d1),

Y (d1, d1, d2) = −αd1
21m1 − αd1

22(m2 − 1) + αd2
23m3 + ϵ2(d2)− ϵ2(d1),

Z(d1, d1, d2) = −αd1
31m1 − αd1

32m2 + αd2
33(m3 − 1) + ϵ3(d2)− ϵ3(d1).

Furthermore, the Nash region NR(d1, d1, d2) includes the fifth octant V in Figure

3.1 and is given by

NR(d1, d1, d2) = {(x, y, z) ∈ R3 : x ≥ X(d1, d1, d2),

y ≥ Y (d1, d1, d2),

z ≤ Z(d1, d1, d2)}.

Hence, the united strategy (d1, d1, d2) is a Nash equilibrium if and only if (x, y, z) ∈

NR(d1, d1, d2) which is illustrated in Figure 3.6. The code used to generate this

figure in Mathematica is shown in Appendix D.

The united strategy (0,m2, 0) implies that all players of types t1 and t3 make

decision d2, but all players of type t2 make the decision d1, so we may refer to

this strategy by (d2, d1, d2). Also, for simplicity to follow our model we denote

to the corresponding horizontal threshold by X(d2, d1, d2), vertical threshold by

Y (d2, d1, d2) and depth threshold by Z(d2, d1, d2). Using Theorem 3.12, these

thresholds can be writing as

X(d2, d1, d2) = αd2
11(m1 − 1)− αd1

12m2 + αd2
13m3 + ϵ1(d2)− ϵ1(d1),

Y (d2, d1, d2) = αd2
21m1 − αd1

22(m2 − 1) + αd2
23m3 + ϵ2(d2)− ϵ2(d1),

Z(d2, d1, d2) = αd2
31m1 − αd1

32m2 + αd2
33(m3 − 1) + ϵ3(d2)− ϵ3(d1).
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Figure 3.6: The united Nash equilibria region NR(d1, d1, d2) in space.

Furthermore, the Nash region NR(d2, d1, d2) is the sixth octant V I in Figure 3.1

and is given by

NR(d2, d1, d2) = {(x, y, z) ∈ R3 : x ≤ X(d2, d1, d2),

y ≥ Y (d2, d1, d2),

z ≤ Z(d2, d1, d2)}.

Hence, the united strategy (d2, d1, d2) is a Nash equilibrium if and only if (x, y, z) ∈

NR(d2, d1, d2) which is illustrated in Figure 3.7. The code used to generate this

figure in Mathematica is shown in Appendix D.

The united strategy (0, 0, 0) implies that all players of all types make decision

d2, so we may refer to this strategy by (d2, d2, d2). Also, for simplicity to follow

our model we denote to the corresponding horizontal threshold by X(d2, d2, d2),

vertical threshold by Y (d2, d2, d2) and depth threshold by Z(d2, d2, d2). Using
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Figure 3.7: The united Nash equilibria region NR(d2, d1, d2) in space.

Theorem 3.12, these thresholds can be writing as

X(d2, d2, d2) = αd2
11(m1 − 1) + αd2

12m2 + αd2
13m3 + ϵ1(d2)− ϵ1(d1),

Y (d2, d2, d2) = αd2
21m1 + αd2

22(m2 − 1) + αd2
23m3 + ϵ2(d2)− ϵ2(d1),

Z(d2, d2, d2) = αd2
31m1 + αd2

32m2 + αd2
33(m3 − 1) + ϵ3(d2)− ϵ3(d1).

Furthermore, the Nash region NR(d2, d2, d2) includes the seventh octant V II in

Figure 3.1 and is given by

NR(d2, d2, d2) = {(x, y, z) ∈ R3 : x ≤ X(d2, d2, d2),

y ≤ Y (d2, d2, d2),

z ≤ Z(d2, d2, d2)}.

Hence, the united strategy (d2, d2, d2) is a Nash equilibrium if and only if (x, y, z) ∈

NR(d2, d2, d2) which is illustrated in Figure 3.8. The code used to generate this

figure in Mathematica is shown in Appendix D.

The united strategy (m1, 0, 0) implies that all players of type t1 make the decision

d1, but all players of types t2 and t3 makes the decision d2, so we may refer to
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Figure 3.8: The united Nash equilibria region NR(d2, d2, d2) in space.

this strategy by (d1, d2, d2). Also, for simplicity to follow our model we denote

to the correspondingly horizontal threshold by X(d1, d2, d2), vertical threshold

by Y (d1, d2, d2) and depth threshold by Z(d1, d2, d2). Using Theorem 3.12, these

thresholds can be writing as

X(d1, d2, d2) = −αd1
11(m1 − 1) + αd2

12m2 + αd2
13m3 + ϵ1(d2)− ϵ1(d1),

Y (d1, d2, d2) = −αd1
21m1 + αd2

22(m2 − 1) + αd2
23m3 + ϵ2(d2)− ϵ2(d1),

Z(d1, d2, d2) = −αd1
31m1 + αd2

32m2 + αd2
33(m3 − 1) + ϵ3(d2)− ϵ3(d1).

Furthermore, the Nash region NR(d1, d2, d2) includes the eighth octant V III in

Figure 3.1 and is given by

NR(d1, d2, d2) = {(x, y, z) ∈ R3 : x ≥ X(d1, d2, d2),

y ≤ Y (d1, d2, d2),

z ≤ Z(d1, d2, d2)}.

Hence, the united strategy (d1, d2, d2) is a Nash equilibrium if and only if (x, y, z) ∈

NR(d1, d2, d2) which is illustrated in Figure 3.9. The code used to generate this
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Figure 3.9: The united Nash equilibria region NR(d1, d2, d2) in space.

figure in Mathematica is shown in Appendix D.

If we combined the previous eight united Nash regions, which means combining

Figures (3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 and 3.9) together, we will get a huge number

of overlaping possibilities. We will show here some interesting possible of ordering

the strategic thresholds.

The first figure we will show when the eight Nash regions are completely separated,

i.e. there is no overlap between any two Nash regions. As we see in Figure 3.10

and Figure 3.11, there are eight Nash regions, each region clarify the Nash region

for one possibility in a model of three types of players. That is, in any Nash region,

we have only one united strategy that is Nash Equilibrium.

Note that we generate Figures 3.10 and 3.11 using Mathematica program which is

shown in Appendix D, and we identify the axes: x, y and z. We collect the eight

octants, where each octant represents Nash region for a certain Equilibrium as it

was introduced in the beginnings of this section.

In these two figures, note that:

• Yellow color represent Nash region for (d1, d1, d1) strategy;
48



Figure 3.10: Degenerate united Nash equilibria regions when Akk < 0 for all
k = 1, 2, 3.

Figure 3.11: Non overlapping equilibria of Figure 3.10 when Akk < 0 for all
k = 1, 2, 3.
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(a) Location A (b) Location B

Figure 3.12: Complex united Nash equilibria region when Akk > 0 for all
k = 1, 2, 3.

• Red color represent Nash region for (d2, d1, d1) strategy;

• Orange color represent Nash region for (d2, d2, d1) strategy;

• Blue color represent Nash region for (d1, d2, d1) strategy;

• Green color represent Nash region for (d1, d1, d2) strategy;

• Brown color represent Nash region for (d2, d1, d2) strategy;

• Magenta color represent Nash region for (d2, d2, d2) strategy;

• Cyan color represent Nash region for (d1, d2, d2) strategy.

Now will show another interesting possibility of ordering the strategic thresholds,

when all Nash regions for all united strategies are overlapping.

In Figure 3.12 we show two different location for such complexity of overlapping

between the eight Nash united regions. New colors will represents different pos-

sibilities of overlapping. There are regions with two, three, four, five, six, seven,

eight Nash equilibria which suppose to have different colors. The Mathematica

code of Figure 3.12 is shown in Appendix D

Example 3.1. We consider a simple overlapping of united Nash equilibria regions

as follows:
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Figure 3.13: Simple overlapping of united Nash equilibria regions.

NR(d1, d1, d1) = {(x, y, z) : x ≥ −4, y ≥ −2, z ≥ −4},

NR(d2, d1, d1) = {(x, y, z) : x ≤ 0, y ≥ 0, z ≥ 0},

NR(d2, d2, d1) = {(x, y, z) : x ≤ 0, y ≤ 6, z ≥ 0},

NR(d1, d2, d1) = {(x, y, z) : x ≥ 0, y ≤ 0, z ≥ 0}, (3.17)

NR(d1, d1, d2) = {(x, y, z) : x ≥ −3, y ≥ 0, z ≤ 3},

NR(d2, d1, d2) = {(x, y, z) : x ≤ 0, y ≥ 0, z ≤ 0},

NR(d2, d2, d2) = {(x, y, z) : x ≤ 0, y ≤ 0, z ≤ 0},

NR(d1, d2, d2) = {(x, y, z) : x ≥ −4, y ≤ 0, z ≤ 4}.

Figure 3.13 is an illustration of Example 3.1. Note that the value of x is represented

on the horizontal x-axis, the value of y is represented on the vertical y-axis, and

the value of z is represented on the depth z-axis.

The Mathematica code used to generate Figure 3.13 is shown in Appendix D.

Note also that there are different overlaps between the united Nash equilibria

represented in other colors that was used previously.
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3.4 Separated Nash equilibria

The goal in this section is to determine and characterize all separated strategies

that form Nash equilibria, by determining the necessary and sufficient conditions

that guarantee the existence of separated Nash equilibria strategies.

Definition 3.15. A separated strategy SD = (S1, S2, · · · , Sn) is a pure strategy

that is not united, where players of the same type tends to make different decisions.

The separated strategy Sk is defined by

Sk : Ik −→ D for all ik ∈ Ik.

such that lk ∈ {1, 2, · · · ,mk−1} for at least k ∈ {1, · · · , n}. Note that under the

separated strategy SD ∈ S we have SD(ik) = d1 for some player ik with type tk or

SD(ik) = d2 for some player ik with type tk. Given SD ∈ S, assume the number

of players who decide d1 of type tk is ld1k (SD) = lk, and the number of players of

type tk who decide to make decision d2 is ld2k (SD) = mk − lk.

Definition 3.16. Let Akj = αd1
kj + αd2

kj for k, j ∈ {1, 2, · · · , n}, be the coordinates

of the influence crowding matrix. Hence, define A as

A =



A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...

An1 An2 · · · Ann


∈ Rn×n.

Note that

• If Akj > 0, then individuals with type tj have a positive influence over the

utility of the individuals with type tk.

• If Akj = 0, then individuals with type tj are indifferent for the utility of the

individuals with type tk.
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• If Akj < 0, then individuals with type tj have a negative influence over the

utility of the individuals with type tk.

Lemma 3.17. Given strategy S ∈ S. Let (l1, l2, · · · , ln) be a Nash Equilibrium.

If Akk > 0, then lk ∈ {0,mk}, where k ∈ {1, · · · , n}. Furthermore, if Akk > 0 for

all k ∈ {0, · · · , n}, then (l1, l2, · · · , ln) is united.

Proof. (By contradiction). Assume Akk > 0 and the strategy profile (l1, l2, · · · , ln)

is a Nash Equilibrium where lk ∈ {1, 2, · · · ,mk − 1} for at least k ∈ {1, 2, · · · , n}.

Hence, the following inequalities hold

Πk(d1; l1, l2, · · · , lk, · · · , ln) ≥ Πk(d2; l1, · · · , lk − 1, · · · , ln) and (3.18)

Πk(d2; l1, l2, · · · , lk, · · · , ln) ≥ Πk(d1; l1, · · · , lk + 1, · · · , ln). (3.19)

Substitute the utilities (3.5) and (3.6) in (3.18), we get

ωd1
k +αd1

kk(lk−1)+
n∑

j=1,j ̸=k

αd1
kjlj+ϵk(d1) ≥ ωd2

k +αd2
kk(mk−lk)+

n∑
j=1,j ̸=k

αd2
kj(mj−lj)+ϵk(d2).

(3.20)

And substitute the utilities (3.5) and (3.6) in (3.19), we get

ωd2
k +αd2

kk(mk−lk−1)+
n∑

j=1,j ̸=k

αd2
kj(mj−lj)+ϵk(d2) ≥ ωd1

k +αd1
kklk+

n∑
j=1,j ̸=k

αd1
kjlj+ϵk(d1).

(3.21)

Combine two inequalities (3.20) and (3.21), we get

−αd1
kk − αd2

kk ≥ 0,

which gives Akk ≤ 0. Hence, this contradicts the assumption of having Akk is

positive. Hence, Lemma (3.17) is hold.

As we said before, the separated strategy is a strategy where the players split into

two groups to make different decisions. So, the separated strategy requires that

53



lk ∈ {1, 2, · · · ,mk − 1} for some k ∈ {1, 2, · · · , n}.

Note that under the separated strategy SD, we have SD(ik) = d1 for some players

of type tk and SD(ik) = d2 for some players of type tk for at least one type tk.

Let SD be the space of all separated strategies. Now, we will introduce a lemma

for possible separated strategies, and show some examples on it.

Lemma 3.18. Given n types of homogeneous players. The total number of sepa-

rated strategies is
n∏

k=1

(mk + 1)− 2n,

where mk is the number of players of type tk.

Proof. By Induction.

Let SD be the space of all separated strategies. The space of all pure strategies

equal SD ∪ SU , where SU is the space of all united strategies.

If n = 1 =⇒ SD ∈ SD

Under SD =⇒ l1 ∈ {1, 2, · · · ,m1 − 1}

=⇒ So, there are m1 − 1 possibilities for the separated

strategies which is equivalent to
1∏

k=1

(mk + 1)− 21.
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Assume it is true for n−1 types of homogeneous players3. Then the total number

of possible separated strategies will be

n−1∏
k=1

(mk + 1)− 2n−1.

Now, for n types of homogeneous players, it follows that by Lemma 3.3 the total

number of separated strategies is

n−1+1∏
k=1

(mk + 1)− (2n−1 + 2n−1).

This is because adding one more type includes 2n−1 cohesive strategies by Lemma

3.9. The last identity is equivalent to

n∏
k=1

(mk + 1)− 2n,

which ends the proof.

Example 3.2. [15] Let n = 1, and we have m players. Then there are m − 1

possible separated strategies, where SD ∈ {1, 2, · · · ,m−1}. Otherwise, the strategy

will be united strategy as we introduced in Section 3.2, where l1 ∈ {0,m}. In Table

3.1 we show that we have m+ 1 pure strategies, strategies in gray cells are united

and the rest are separated.

Table 3.1: Pure strategies for 1 type of players.

Type 1 0 1 2 . . . m

3If n = 2 =⇒ SD ∈ SD

Under SD =⇒ {l1 ∈ {1, 2, · · · ,m1 − 1} and l2 ∈ {0, 1, 2, · · · ,m2}}
Or {l1 ∈ {0, 1, 2, · · · ,m1} and l2 ∈ {1, 2, · · · ,m2 − 1}}
=⇒ So, there are m1m2 +m1 +m2 − 3 possibilities for the separated strategies which is
equivalent to

2∏
k=1

(mk + 1)− 22.
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Figure 3.14: Pure Nash equilibria interval when A < 0.

Figure 3.15: United Nash equilibria interval when A > 0.

We can see in Figure 3.14 the Nash intervals for pure strategies, where the right

interval is for united strategies given by

x > X1(m) = −αd1
11(m− 1).

This threshold represents the case where all players make decision d1. The left

interval is for united strategies given by

x < X1(0) = αd2
11(m− 1).

This threshold represents the case where all players make decision d2. While the

middle interval is for separated strategies.

Example 3.3. Let n = 2, which means we have two types t1 and t2 with m1 and

m2 players, respectively. We present the pure strategies using the Table 3.2, which

refers to all possible separated and united strategies.

In Table 3.2 we show all possible pure strategies for two types of players which equal

(m1+1)·(m2+1) = m1m2+m1+m2+1, and we can see that the corners represent

the united strategies which equal (as we saw before by Lemma 3.9) 22 = 4. So,

we can see that the number of possible separated strategies for two types of players

equal
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m1m2 +m1 +m2 + 1− 4 = m1m2 +m1 +m2 − 3,

where m1 represent the number of players of type t1 and m2 represents the number

of players of type t2.

Table 3.2: Pure strategies for 2 types of players

Type 2

T
y
p
e
1

l1

l2 0 1 . . . m2 − 1 m2

0 (0,0) (0,1) . . . (0,m2 − 1) (0,m2)

1 (1,0) (1,1) . . . (1,m2 − 1) (1,m2)
2 (2,0) (2,1) . . . (2,m2 − 1) (2,m2)
...

...
...

...
...

m1 − 1 (m1 − 1,0) (m1 − 1,1) . . . (m1 − 1,m2 − 1) (m1 − 1,m2)

m1 (m1,0) (m1,1) . . . (m1,m2 − 1) (m1,m2)

Example 3.4. Let n = 2, where there are two type of players. Let m1 = m2 = 4,

i.e. the number of players for each type are four players. Let A11 < 0 and A22 > 0,

since A11 not greater than zero, then l1 ∈ {0, 1, 2, 3, 4}. But, l2 ∈ {0, 4} since

A22 > 0. See Figure 3.16 which clarify the Nash domains for this game.

As we can see in the figure, the Nash domain doesn’t include strategies where

l2 ∈ {1, 2, 3}, since as we said before A22 > 0.

The blue regions represents two united strategies that are Nash Equilibrium. The

graph also represent the thresholds for united strategies. The areas in light violet

colour, represent the Nash domain for separated strategies, where l1 ∈ {1, 2, 3} and

l2 ∈ {0, 4}.

Example 3.5. Let n = 3, and we have m1,m2,m3 players of type t1, t2, t3 respec-

tively. We will represent the pure strategies using the following Table 3.3, which

refers to all possible pure (united and separated) strategies, which equal

(m1+1)·(m2+1)·(m3+1) = m1m2m3+m1m2+m1m3+m2m3+m3+m2+m1+1.

The gray cells reflex the united strategies which equal to 23 = 8 according to Lemma

3.9. So, the number of possibilities of separated strategies for a game contains three

types of people equal
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Figure 3.16: Separated Nash domain N(l1, l2) when A11 < 0, A12 < 0, A21 >
0, A22 > 0 and m1 = m2 = 4.

m1m2m3 +m1m2 +m1m3 +m2m3 +m3 +m2 +m1 + 1− 8 =

m1m2m3 +m1m2 +m1m3 +m2m3 +m3 +m2 +m1 − 7,

where m1,m2,m3 reflects numbers of players of type t1, t2, t3 respectively.

Let C be a vector in Rn defined by

C =
(
X1(0, 0, · · · , 0), X2(0, 0, · · · , 0), · · · , Xn(0, 0, · · · , 0)

)
.

Definition 3.19. Define the united kth vector X⃗k by

X⃗k =
(
X1(0, · · · , 0,mk, 0, · · · , 0), X2(0, · · · , 0,mk, 0, · · · , 0), · · · ,

Xn(0, · · · , 0,mk, 0, · · · , 0)
)
−C

(3.22)
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Table 3.3: Pure strategies for 3 types of players

Type 1 Type 2
Type 3

0 1 . . . m3 − 1 m3

0

0 (0,0,0) (0,0,1) . . . (0,0,m3 − 1) (0,0,m3)

1 (0,1,0) (0,1,1) . . . (0,1,m3 − 1) (0,1,m3)
2 (0,2,0) (0,2,1) . . . (0,2,m3 − 1) (0,2,m3)
...

...
...

...
...

m2 (0,m2,0) (0,m2,1) . . . (0,m2,m3 − 1) (0,m2,m3)

1

0 (1,0,0) (1,0,1) . . . (1,0,m3 − 1) (1,0,m3)
1 (1,1,0) (1,1,1) . . . (1,1,m3 − 1) (1,1,m3)
2 (1,2,0) (1,2,1) . . . (1,2,m3 − 1) (1,2,m3)
...

...
...

...
...

m2 (1,m2,0) (1,m2,1) . . . (1,m2,m3 − 1) (1,m2,m3)
...

...
...

...
...

...
...

...
...

...
...

...

m1

0 (m1,0,0) (m1,0,1) . . . (m1,0,m3 − 1) (m1,0,m3)

1 (m1,1,0) (m1,1,1) . . . (m1,1,m3 − 1) (m1,1,m3)
2 (m1,2,0) (m1,2,1) . . . (m1,2,m3 − 1) (m1,2,m3)
...

...
...

...
...

m2 (m1,m2,0) (m1,m2,1) . . . (m1,m2,m3 − 1) (m1,m2,m3)

Lemma 3.20. One can show that X⃗k in 3.19 can be written as

X⃗k = −(A1kmk, A2kmk, · · · , Ak−1kmk, Akk(mk − 1), Ak+1kmk, · · · , Ankmk).

Proof. We know from Definition 3.19

X⃗k =
(
X1(0, · · · , 0,mk, 0, · · · , 0), X2(0, · · · , 0,mk, 0, · · · , 0), · · · ,

Xn(0, · · · , 0,mk, 0, · · · , 0)
)
−C,

(3.23)
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by substituting in Theorem 3.12 we get

X⃗k =

((
−αd1

1kmk +
∑
j∈N2
j ̸=1
j ̸=k

αd2
1jmj + αd2

11(m1 − 1)−
(∑
j∈N2
j ̸=1

αd2
1jmj + αd2

11(m1 − 1)
))

,

(
−αd1

2kmk +
∑
j∈N2
j ̸=2
j ̸=k

αd2
2jmj + αd2

22(m2 − 1)−
(∑
j∈N2
j ̸=2

αd2
2jmj + αd2

22(m2 − 1)
))

, · · · ,

(
−αd1

kk(mk − 1) +
∑
j∈N2
j ̸=k

αd2
kjmj −

(∑
j∈N2
j ̸=k

αd2
kjmj + αd2

kk(mk − 1)
))

,

(
−αd1

k+1kmk +
∑
j∈N2
j ̸=k+1
j ̸=k

αd2
k+1jmj + αd2

k+1k+1(mk+1 − 1)−
( ∑

j∈N2
j ̸=k+1

αd2
k+1jmj

+ αd2
k+1k+1(mk+1 − 1)

))
, · · · ,(

−αd1
nkmk +

∑
j∈N2
j ̸=n
j ̸=k

αd2
njmj + αd2

nn(mn − 1)−
(∑
j∈N2
j ̸=n

αd2
njmj + αd2

nn(mn − 1)
)))

.

By rearranging the terms we get

X⃗k =

((
−αd1

1kmk − αd2
1kmk

)
,
(
−αd1

2kmk − αd2
2kmk

)
, · · · ,(

−αd1
kk(mk − 1)− αd2

kk(mk − 1)
)
,(

−αd1
k+1kmk − αd2

k+1kmk

)
, · · · ,

(
−αd1

nkmk − αd2
nkmk

))
.

Now, by taking the common factor we get

X⃗k =

((
(−αd1

1k − αd2
1k)mk

)
,
(
(−αd1

2k − αd2
2k)mk

)
, · · · ,

(
(−αd1

kk − αd2
kk)(mk − 1)

)
,(

(−αd1
k+1k − αd2

k+1k)mk

)
, · · · ,

(
(−αd1

nk − αd2
nk)mk

))
.

By substituting in 3.16 we get

X⃗k = −(A1kmk, A2kmk, · · · , Ak−1kmk, Akk(mk − 1), Ak+1kmk, · · · , Ankmk),

which complete the proof.
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By Lemma 3.20, we note that

X⃗1 = −(A11(m1 − 1), A21m1, · · · , An1m1),

X⃗2 = −(A12m2, A22(m2 − 1), A32m2, · · · , An2m2),

and so on.

Definition 3.21. The separated vector Z⃗(l1, l2, · · · , ln) is defined by

Z⃗(l1, l2, · · · , ln) =− l1(A11, A21, · · · , An1)− l2(A12, A22, · · · , An2)− · · ·

− ln(A1n, A2n, · · · , Ann).

Lemma 3.22. One can show Z⃗(l1, l2, · · · , ln) in 3.21 can be written as

Z⃗(l1, l2, · · · , ln) =
l1

m1 − 1

(
X⃗1 + (0, A21, · · · , An1)

)
+

l2
m2 − 1

(
X⃗2 + (A12, 0, A32, · · · , An2)

)
+ · · ·

+
ln

mn − 1

(
X⃗n + (A1n, A2n, · · · , A(n−1)n, 0)

)
.

Proof. We know from Definition 3.21

Z⃗(l1, l2, · · · , ln) = −l1(A11, A21, · · · , An1)− l2(A12, A22, · · · , An2)− · · ·

−ln(A1n, A2n, · · · , Ann),

= l1(−A11,−A21, · · · ,−An1) + l2(−A12,−A22, · · · ,−An2)

+ · · ·+ ln(−A1n,−A2n, · · · ,−Ann),
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multiply each lk by mk and divide by mk for all k ∈ {1, 2, · · · , n}, we get

Z⃗(l1, l2, · · · , ln) =
l1
m1

(−A11m1,−A21m1, · · · ,−An1m1)

+
l2
m2

(−A12m2,−A22m2, · · · ,−An2m2) + · · ·

+
ln
mn

(−A1nmn,−A2nmn, · · · ,−Annmn),

add mk and substract mk from −Akkmk, we get

Z⃗(l1, l2, · · · , ln) =
l1
m1

(−A11m1 + A11 − A11,−A21m1, · · · ,−An1m1)

+
l2
m2

(−A12m2,−A22m2 + A22 − A22, · · · ,−An2m2) + · · ·

+
ln
mn

(−A1nmn,−A2nmn, · · · ,−Annmn + Ann − Ann),

take the common factor Akk for all k ∈ {1, 2, · · · , n}

Z⃗(l1, l2, · · · , ln) =
l1
m1

(−A11(m1 − 1)− A11,−A21m1, · · · ,−An1m1)

+
l2
m2

(−A12m2,−A22(m2 − 1)− A22, · · · ,−An2m2) + · · ·

+
ln
mn

(−A1nmn,−A2nmn, · · · ,−Ann(mn − 1)− Ann),

rearrange using Lemma 3.20 we get

Z⃗(l1, l2, · · · , ln) =
l1
m1

(X⃗1 − (A11, 0, 0, · · · , 0)) +
l2
m2

(X⃗2 − (0, A22, 0, 0, · · · , 0))

+ · · ·+ ln
mn

(X⃗n − (0, 0, · · · , 0, Ann)),

(3.24)
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add and subtract (A1k, A2k, · · · , Ak−1k, 0, Ak+1k, · · · , Ank) to each element, then

we have

Z⃗(l1, l2, · · · , ln) =
l1
m1

(X⃗1 + (0, A21, · · · , An1)− (A11, A21, · · · , An1))

+
l2
m2

(X⃗2 + (A12, 0, A32, · · · , An2)− (A12, A22, A32, · · · , An2))

+ · · ·+ ln
mn

(X⃗n + (A1n, A2n, · · · , A(n−1)n, 0)

−(A1n, A2n, · · · , A(n−1)n, Ann)),

multiply by mk − 1 and divide by mk − 1 for all k ∈ {1, · · · , n} and rearrange the

terms we get

Z⃗(l1, l2, · · · , ln) =
l1

m1 − 1
(X⃗1 + (0, A21, · · · , An1))

+
l2

m2 − 1
(X⃗2 + (A12, 0, A32, · · · , An2)) + · · ·

+
ln

mn − 1
(X⃗n + (A1n, A2n, · · · , A(n−1)n, 0)),

which completes the proof.

Theorem 3.23. Let lk ∈ {1, 2, · · · ,mk − 1} for all k = 1, 2, · · · , n.

• If Akk ≤ 0, then the separated Nash region NR(0, 0, · · · , 0, lk, 0 · · · , 0) is

given by

NR(0, 0, · · · , 0, lk, 0 · · · , 0) =
{
C + Z⃗(0, 0, · · · , 0, lk, 0 · · · , 0)

+ (p1, p2, · · · , pk−1, pkAkk, pk+1, · · · , pn) :

pk ∈ [0, 1], pj ∈ (−∞, 0] ∀j ∈ {1, 2, · · · , k − 1, k + 1, · · · , n}
}
.
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and the separated Nash region NR(m1,m2, · · · ,mk−1, lk,mk+1, · · · ,mn) is

given by

NR(m1,m2, · · · ,mk−1, lk,mk+1, · · · ,mn) =
{
C

+ Z⃗(m1 − 1,m2 − 1, · · · ,mk−1 − 1, lk,mk+1 − 1, · · · ,mn − 1)

+ (p1, p2, · · · , pk−1, pkAkk, pk+1, · · · , pn) :

pk ∈ [0, 1], pj ∈ [0,∞) ∀j ∈ {1, 2, · · · , k − 1, k + 1, · · · , n}
}
.

• If Akk ≤ 0 ∀k ∈ {1, 2, · · · , n}, then the separated Nash region

NR(l1, l2, · · · , ln) is given by

NR(l1, l2, · · · , ln) =
{
C + Z⃗(l1, l2, · · · , ln)+

(p1A11, p2A22, · · · , pnAnn) : pk ∈ [0, 1] ∀k ∈ {1, 2, · · · , n}
}
.

Hence, if the individuals with a given type have a non-positive influence over the

utility of the individuals with the same type, i.e. Akk ≤ 0 for all k ∈ {1, 2, · · · , n},

then for every (l1, l2, · · · , ln) separated strategic set there are relative preferences

for which (l1, l2, · · · , ln) is a Nash equilibrium set.

Proof. The (0, · · · , 0, lk, 0, · · · , 0) strategy is a Nash equilibrium if and only if the

following inequalities hold

Πk(d1; 0, · · · , 0, lk, 0, · · · , 0) ≥ Πk(d2; 0, · · · , 0, lk − 1, 0, · · · , 0), (3.25)

Πk(d2; 0, · · · , 0, lk, 0, · · · , 0) ≥ Πk(d1; 0, · · · , 0, lk + 1, 0, · · · , 0), (3.26)

Πj(d2; 0, · · · , 0, lk, 0, · · · , 0) ≥ Πj(d1; 0, · · · , 0, 1j, 0, · · · , 0, lk, 0, · · · , 0) (3.27)

∀j ∈ {1, 2, · · · , k − 1, k + 1, · · · , n}, where 1j refer to value equal 1 in position j.
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Now substitute the utility functions from (3.5) and (3.6) in inequality (3.25) we

obtain

ωd1
k + αd1

k10 + αd1
k20 + · · ·+ αd1

kk−10 + αd1
kk(lk − 1) + αd1

kk+10 + · · ·+ αd1
kn0 + ϵk(d1) ≥

ωd2
k + αd2

k1(m1 − 0) + αd2
k2(m2 − 0) + · · ·+ αd2

kk−1(mk−1 − 0)

+ αd2
kk(mk − (lk − 1)− 1) + αd2

kk+1(mk+1 − 0) + · · ·+ αd2
kn(mn − 0) + ϵk(d2),

Rearranging the terms in the above inequality we get

ωd1
k − ωd2

k ≥ −αd1
kk(lk − 1) + αd2

k1m1 + αd2
k2m2 + · · ·+ αd2

kk−1mk−1 + αd2
kk(mk − lk)

+ αd2
kk+1mk+1 + · · ·+ αd2

knmn + ϵk(d2)− ϵk(d1),

which can simplify to

xk ≥ −αd1
kk(lk − 1)− αd2

kk(lk − 1) + αd2
k1m1 + αd2

k2m2 + · · ·+ αd2
kk−1mk−1

+ αd2
kk(mk − 1) + αd2

kk+1mk+1 + · · ·+ αd2
knmn + ϵk(d2)− ϵk(d1).

Using the Xk threshold Xk(0, 0, · · · , 0) strategy profile 3.14 we get

xk ≥ Xk(0, 0, · · · , 0)− Akk(lk − 1) + ϵk(d2)− ϵk(d1),

Now substitute the utility functions from (3.5) and (3.6) in inequality (3.26) we

obtain

ωd2
k + αd2

k1(m1 − 0) + αd2
k2(m2 − 0) + · · ·+ αd2

kk−1(mk−1 − 0) + αd2
kk(mk − lk − 1)

+ αd2
kk+1(mk+1 − 0) + · · ·+ αd2

kn(mn − 0) + ϵk(d2) ≥ ωd1
k + αd1

k10 + αd1
k20 + · · ·

+ αd1
kk−10 + αd1

kk(lk + 1− 1) + αd1
kk+10 + · · ·+ αd1

kn0 + ϵk(d1)

Rearranging the terms in the above inequality we get

ωd1
k − ωd2

k ≤ −αd1
kklk + αd2

k1m1 + αd2
k2m2 + · · ·+ αd2

kk−1mk−1 + αd2
kk(mk − lk − 1)

+ αd2
kk+1mk+1 + · · ·+ αd2

knmn + ϵk(d2)− ϵk(d1).
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Using the Xk threshold Xk(0, 0, · · · , 0) strategy profile 3.14 we get

xk ≤ −αd1
kklk − αd2

kklk +Xk(0, 0, · · · , 0) + ϵk(d2)− ϵk(d1),

which can simplify to

xk ≤ Xk(0, 0, · · · , 0)− Akklk + ϵk(d2)− ϵk(d1).

Now substitute the utility functions from (3.5) and (3.6) in inequality (3.27) we

obtain

ωd2
j + αd2

j1(m1 − 0) + αd2
j2(m2 − 0) + · · ·+ αd2

jj−1(mj−1 − 0) + αd2
jj (mj − 0− 1)

+ αd2
jj+1(mj+1 − 0) + · · ·+ αd2

jk−1(mk−1 − 0) + αd2
jk(mk − lk) + αd2

jk+1(mk+1 − 0)

+ · · ·+ αd2
jn(mn − 0) + ϵj(d2) ≥ ωd1

j + αd1
j10 + αd1

j20 + · · ·+ αd1
jj−10 + αd1

jj (1− 1)

+ αd1
jj+10 + · · ·+ αd1

jk−10 + αd1
jklk + αd1

jk+10 + · · ·+ αd1
jn0 + ϵj(d1),

Rearranging the terms in the above inequality we get

ωd1
j − ωd2

j ≤ −αd1
jklk + αd2

j1m1 + αd2
j2m2 + · · ·+ αd2

jj−1mj−1 + αd2
jj (mj − 1)

+ αd2
jj+1mj+1 + · · ·+ αd2

jk−1mk−1 + αd2
jk(mk − lk) + αd2

jk+1mk+1 + · · ·

+ αd2
jnmn + ϵj(d2)− ϵj(d1).

Using the Xj threshold Xj(0, 0, · · · , 0) strategy profile 3.14 we get

xj ≤ −αd1
jklk − αd2

jklk +Xj(0, 0, · · · , 0) + ϵj(d2)− ϵj(d1),

which can simplify to

xj ≤ Xj(0, 0, · · · , 0)− Ajklk + ϵj(d2)− ϵj(d1).
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We note that

C + Z⃗(0, · · · , 0, lk, 0, · · · , 0) + (p1, · · · , pk−1, pkAkk, pk+1, · · · , pn)

=
(
(x1(0, · · · , 0), · · · , (xn(0, · · · , 0)

)
−lk(A1k, · · · , Ank)

+(p1, · · · , pk−1, pkAkk, pk+1, · · · , pn),

=
(
X1(0, · · · , 0)− A1klk, · · · , Xn(0, · · · , 0)− Anklk

)
+(p1, · · · , pk−1, pkAkk, pk+1, · · · , pn).

Since NR(0, · · · , 0, lk, 0, · · · , 0) represents the set of all preferences (x1, · · · , xn)

such that type j where j ∈ {1, 2, · · · , k − 1, k + 1, · · · , n} all deciding d2 (xj is

being low that is why pj ∈ (−∞, 0]) while type tk preferences xk is moving from

Xk(0, · · · , 0) towards Xk(0, · · · , 0,mk, 0, · · · , 0) (that is why pk ∈ [0, 1]) and each

move costs −Akk, so total cost is −Akklk. Hence, NR(0, · · · , 0, lk, 0, · · · , 0) can

be finally written as

N (0, 0, · · · , 0, lk, 0 · · · , 0) = {C + Z⃗(0, 0, · · · , 0, lk, 0 · · · , 0)

+(p1, p2, · · · , pk−1, pkAkk, pk+1, · · · , pn) :

pk ∈ [0, 1], pj ∈ (−∞, 0]

∀j ∈ {1, 2, · · · , k − 1, k + 1, · · · , n}.

The proof of Theorem 3.23 for the other cases follows similarly to the proof of the

first case.

3.5 Mixed Nash equilibria

Recall that from Definition 3.2 we have

I = I1 ⊔ I2 ⊔ · · · ⊔ In,
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where

I = {i = (i1, i2, · · · , in) ∈ Rn : ik ∈ Ik, k ∈ {1, · · · , n}}.

Each player ik ∈ Ik is assumed to make one decision d ∈ D = {d1, d2}.

Given a mixed strategy S = (S1, S2, · · · , Sn), we describe the mixed decision of

the players of type tk by a mixed strategy map

Sk : Ik −→ [0,1]

that associates to each player ik ∈ Ik the probability pik = S(ik) to decide d1 ∈ D,

where k ∈ {1, · · · , n}. Hence, each player ik ∈ Ik decides d2 ∈ D with probability

1 − pik = 1 − S(ik). We assume that the decisions of the players are taken

independently.

Define

Pk =

mk∑
i=1

pik ,

and

Pik = Pk − pik ,

for k = 1, 2, · · · , n.

For every player ik ∈ Ik, the d1−fitness function for players of type tk fd1,k :

[0, 1]× [0,m1]× · · · × [0,mn] −→ R+ is defined by

fd1,k(pik ;P1, P2, · · · , Pn) =ωd1
k + αd1

k1P1 + · · ·+ αd1
kk−1Pk−1 + αd1

kkPik + αd1
kk+1Pk+1

+ · · ·+ αd1
knPn; (3.28)

and the d2−fitness function fd2,k : [0, 1]× [0,m1]× · · · × [0,mn] −→ R+ is defined

by

fd2,k(pik ;P1, P2, · · · , Pn) = ωd2
k + αd2

k1(m2 − P1) + · · ·+ αd2
kk−1(mk−1 − Pk−1)

+αd2
kk(mk − 1− Pik) + αd2

kk+1(mk+1 − Pk+1)

+ · · ·+ αd2
kn(mn − Pn). (3.29)
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Definition 3.24. Let S = (S1, S2, · · · , Sn) be a mixed strategy where

Sk : Ik −→ [0, 1], where k ∈ {1, 2, · · · , n}.

For every individual ik ∈ Ik, The utility function

Πk : [0, 1]× [0,m1]× · · · × [0,mn] −→ R+,

is defined by

Πk(pik ;P1, · · · , Pn) = pikfd1,k(pik ;P1, · · · , Pn) + (1− pik)fd2,k(pik ;P1, · · · , Pn).

Lemma 3.25. Let Sk : Ik −→ [0, 1] be a mixed Nash equilibrium for all k =

1, 2, · · · , n. If 0 < pik < 1, then

xk = −Akk(Pk − pik)− Ak1P1 − Ak2P2 − · · · − Akk−1Pk−1 − Akk+1Pk+1 − · · ·

−AknPn +Xk(d2, d2, · · · , d2). (3.30)

Proof. Let Sk : Ik −→ [0, 1] be a mixed Nash equilibrium for all k = 1, 2, · · · , n.

For every p ∈ [0, 1], we have

Πk(pik ;P1, P2, · · · , Pn) ≥ Πk(p;P1, P2, · · · , Pk−1, Pk − pik + p, Pk+1, · · · , Pn).

If 0 < pik < 1, we get

fd1,k(pik , P1, P2, · · · , Pn) = fd2,k(pik , P1, P2, · · · , Pn).

Substitute the fitness functions we get

ωd1
k + αd1

k1P1 + · · ·+ αd1
kk−1Pk−1 + αd1

kkPik + αd1
kk+1Pk+1 + · · ·+ αd1

knPn =

ωd2
k + αd2

k1(m2 − P1) + · · ·+ αd2
kk−1(mk−1 − Pk−1) + αd2

kk(mk − 1− Pik)

+αd2
kk+1(mk+1 − Pk+1) + · · ·+ αd2

kn(mn − Pn). (3.31)
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Rearranging the previous equation we obtain

ωd1
k − ωd2

k = −αd1
k1P1 − · · · − αd1

kk−1Pk−1 − αd1
kkPik − αd1

kk+1Pk+1 − · · · − αd1
knPn

+αd2
k1(m2 − P1) + · · ·+ αd2

kk−1(mk−1 − Pk−1) + αd2
kk(mk − 1− Pik) (3.32)

+αd2
kk+1(mk+1 − Pk+1) + · · ·+ αd2

kn(mn − Pn).

Using the Definition 3.5 and expand the brackets, we rearrange 3.32 to get

xk = −αd1
k1P1 − · · · − αd1

kk−1Pk−1 − αd1
kkPik − αd1

kk+1Pk+1 − · · · − αd1
knPn

+αd2
k1m2 − αd2

k1P1 + · · ·+ αd2
kk−1mk−1 − αd2

kk−1Pk−1 + αd2
kkmk − αd2

kk − αd2
kkPik

+αd2
kk+1mk+1 − αd2

kk+1Pk+1 + · · ·+ αd2
knmn − αd2

knPn.

Take common factor from previous equalty to get

xk = −(αd1
k1 + αd2

k1)P1 − · · · − (αd1
kk−1 + αd2

kk−1)Pk−1 − (αd1
kk + αd2

kk)Pik

−(αd1
kk+1 + αd2

kk+1)Pk+1 − · · · − (αd1
kn + αd2

kn)Pn + αd2
k1m2 + · · ·+ αd2

kk−1mk−1

+αd2
kkmk − αd2

kk + αd2
kk+1mk+1 + · · ·+ αd2

knmn.

Using the definition of the coordinates of the influence crowding matrix, we rear-

range the previous equality to get

xk = −Ak1P1 − · · · − Akk−1Pk−1 − AkkPik − Akk+1Pk+1 − · · · − AknPn

+αd2
k1m2 + · · ·+ αd2

kk−1mk−1 + αd2
kk(mk − 1) + αd2

kk+1mk+1 + · · ·+ αd2
knmn.

Which can simplified using threshold Xk(0, 0, · · · , 0) from Theorem 3.12 to

xk = −Ak1P1−· · ·−Akk−1Pk−1−AkkPik−Akk+1Pk+1−· · ·−AknPn+Xk(0, 0, · · · , 0).
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Chapter 4

Applications in Economics

In this chapter, we will introduce a special case of our decision model by including

three types of tourists, who will distribute among two resorts: Beach resort and

Mountain resort.

4.1 General resort pricing model

In this section, we will explain the parameters of our model for resort interest.

We will assume that T is the set of n types of homogeneous tourists, where

each tk type have mk tourist. Each tourists have to choose between spending

their holidays in a Beach resort B = d1 or in a Mountain resort M = d2, i.e.

d ∈ D = {d1, d2} = {B,M}.

Let P be the price vector whose coordinates pr > 0 indicates the standard price

of the resort r ∈ {B,M} for each resort, independently of its type. That is,

P = (pB, pM).

Let L be preference location matrix that reflects the tourists taste type and given

by

71



L =



ωB
1 ωM

1

ωB
2 ωM

2

ωB
3 ωM

3

...
...

ωB
n ωM

n


∈ Rn×2.

Let Nr be the interacting matrix that reflects the crowding effect of resort r ∈ D

and given by

Nr =



αr
11 αr

12 αr
13 . . . αr

1n

αr
21 αr

22 αr
23 . . . αr

2n

αr
31 αr

32 αr
33 . . . αr

3n

...
...

...
...

αr
n1 αr

n2 αr
n3 . . . αr

nn


∈ Rn×n.

Let A be the partial crowding matrix whose coordinates given by

A =



A11 A12 A13 . . . A1n

A21 A22 A23 . . . A2n

A31 A32 A33 . . . A3n

...
...

...
...

An1 An2 An3 . . . Ann


.

where

Akj = αB
kj + αM

kj ,

for all k, j ∈ {1, 2, 3, · · · , n}. The partial coordinates encode all relevant informa-

tion for the existence of Nash equilibria strategies.
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We now define the corresponding utility functions Πk : D×O −→ R is the utility

function of the tourist with type tk who choose resort r ∈ D is defined by

Πk(B; l1, · · · , lk, · · · , ln) = −pB + ωB
k + αB

k1l1 + αB
k2l2 + · · ·+ αB

kk(lk − 1) + · · ·

+αB
knln + ϵk(B) (4.1)

Πk(M ; l1, · · · , lk, · · · , ln) = −pM + ωM
k + αM

k1(m1 − l1) + αB
k2(m2 − l2) + · · ·+

αM
kk(mk − lk − 1) + · · ·+ αM

kn(mn − ln) (4.2)

+ϵk(M),

where k ∈ {1, 2, · · · , n}.

4.2 Particular case for three types of tourists

We consider three types of tourists. Hence, the utility functions in (3.5) and (3.6)

are simplified as follows:

Π1 : r × O −→ R is the utility function of the tourist with type t1 who choose

resort r ∈ D is defined by

Π1(B; l1, l2, l3) = −pB + ωB
1 + αB

11(l1 − 1) + αB
12l2 + αB

13l3 + ϵ1(B) (4.3)

Π1(M ; l1, l2, l3) = −pM + ωM
1 + αM

11(m1 − l1 − 1) + αB
12(m2 − l2)

+αM
13(m3 − l3) + ϵ1(M) (4.4)

Π2 : r × O −→ R is the utility function of the tourist with type t2 who choose

resort r ∈ D is defined by

Π2(B; l1, l2, l3) = −pB + ωB
2 + αB

21l1 + αB
22(l2 − 1) + αB

23l3 + ϵ2(B) (4.5)

Π2(M ; l1, l2, l3) = −pM + ωM
2 + αM

21(m1 − l1) + αB
22(m2 − l2 − 1)

+αM
23(m3 − l3) + ϵ2(M), (4.6)
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and Π3 : r×O −→ R is the utility function of the tourist with type t3 who choose

resort r ∈ D is defined by

Π3(B; l1, l2, l3) = −pB + ωB
3 + αB

31l1 + αB
32l2 + αB

33(l3 − 1) + ϵ3(B) (4.7)

Π3(M ; l1, l2, l3) = −pM + ωM
3 + αM

31(m1 − l1) + αB
32(m2 − l2)

+αM
33(m3 − l3 − 1) + ϵ3(M). (4.8)

Definition 4.1. We define the following location preferences

x = ωB
1 − ωM

1 is the horizontal relative location preference of the tourists with

type t1,

y = ωB
2 − ωM

2 is the vertical relative location preference of the tourists with

type t2 and

z = ωB
3 − ωM

3 is the depth relative location preference of the tourists with

type t3.

Let (x, y, z) be relative location preference of tourists with types (t1, t2, t3) respec-

tively.

Definition 4.2. Let p = pB − pM be the significant difference price which takes

real values.

That is, if p = 0 then pB = pM , if p > 0 then pB > pM and if p < 0 then pB < pM .

Definition 4.3. A united strategy (R1, R2, R3) is the set of all relative prices p

for which the strategy (R1, R2, R3) is a Nash equilibrium, where Rk ∈ {B,M} for

all k = 1, 2, 3.

Given a triple (x, y, z) of relative location preferences, the Nash equilibrium prices

interval NP (R1, R2, R3) of a united strategy (R1, R2, R3) is the set of all relative

prices p for which the strategy (R1, R2, R3) is a Nash equilibrium. So, our aim in

next section is to determine and characterize all Nash equilibrium prices intervals.
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4.3 Nash Equilibrium prices

In this section, we will determine and characterize all Nash equilibrium prices

intervals in tourist model for a given preferences (x, y, z). As we proved in Lemma

3.9 there are 2n united strategies, where n is the number of homogeneous types.

So, as we have here three types of homogeneous tourists, so we can observe that

there are eight (23) distinct united strategies as follow:

1. (B,B,B) strategy - all tourists choose the resort B;

2. (B,B,M) strategy - all tourists with type t1 and t2 choose the resort B, but

all tourists with type t3 choose the resort M;

3. (B,M,B) strategy - all tourists with type t1 and t3 choose the resort B, but

all tourists with type t2 choose the resort M;

4. (B,M,M) strategy - all tourists with type t1 choose the resort B, but all

tourists with type t2 and t3 choose the resort M;

5. (M,B,B) strategy - all tourist with type t2 and t3 choose the resort B, but

all tourists with type t1 choose the resort M;

6. (M,B,M) strategy - all tourists with type t2 choose the resort B, but all

tourists, with type t1 and t3 choose the resort M;

7. (M,M,B) strategy - all tourists with type t3 choose the resort B, but all

tourists with type t1 and t2 choose the resort M;

8. (M,M,M) strategy - all tourists choose the resort M.

Theorem 4.4. Given the preferences x, y, z for three types.

The Nash Equilibrium prices interval NP (B,B,B) for which (B,B,B) is Nash

Equilibrium is the set

NP (B,B,B) = {p ∈ R : p ≤ x−H(B,B,B) and

p ≤ y − V (B,B,B) and (4.9)

p ≤ z −D(B,B,B)},
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where the horizontal H(B,B,B), vertical V (B,B,B) and depth D(B,B,B) strate-

gic thresholds of the (B,B,B) strategy are respectively, given by

H(B,B,B) = −αB
11(m1 − 1)− αB

12m2 − αB
13m3 + ϵ1(M)− ϵ1(B),

V (B,B,B) = −αB
21m1 − αB

22(m2 − 1)− αB
23m3 + ϵ2(M)− ϵ2(B),

D(B,B,B) = −αB
31m1 − αB

32m2 − αB
33(m3 − 1) + ϵ3(M)− ϵ3(B).

The Nash equilibrium prices interval NP (B,B,M) for which (B,B,M) is Nash

Equilibrium is the set

NP (B,B,M) = {p ∈ R : p ≤ x−H(B,B,M) and

p ≤ y − V (B,B,M) and

p ≥ z −D(B,B,M)},

where the horizontal H(B,B,M), vertical V (B,B,M) and depth D(B,B,M)

strategic thresholds of the (B,B,M) strategy are respectively, given by

H(B,B,M) = −αB
11(m1 − 1)− αB

12m2 + αM
13m3 + ϵ1(M)− ϵ1(B),

V (B,B,M) = −αB
21m1 − αB

22(m2 − 1) + αM
23m3 + ϵ2(M)− ϵ2(B),

D(B,B,M) = −αB
31m1 − αB

32m2 + αM
33(m3 − 1) + ϵ3(M)− ϵ3(B).

The Nash equilibrium prices interval NP (B,M,B) for which (B,M,B) is Nash

Equilibrium is the set

NP (B,M,B) = {p ∈ R : p ≤ x−H(B,M,B) and

p ≥ y − V (B,M,B) and

p ≤ z −D(B,M,B)},

where the horizontal H(B,M,B), vertical V (B,M,B) and depth D(B,M,B) strate-

gic thresholds of the (B,M,B) strategy are respectively, given by

H(B,M,B) = −αB
11(m1 − 1) + αM

12m2 − αB
13m3 + ϵ1(M)− ϵ1(B),

V (B,M,B) = −αB
21m1 + αM

22(m2 − 1)− αB
23m3 + ϵ2(M)− ϵ2(B),
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D(B,M,B) = −αB
31m1 + αM

32m2 − αB
33(m3 − 1) + ϵ3(M)− ϵ3(B).

The Nash equilibrium prices interval NP (B,M,M) for which (B,M,M) is Nash

Equilibrium is the set

NP (B,M,M) = {p ∈ R : p ≤ x−H(B,M,M) and

p ≥ y − V (B,M,M) and

p ≥ z −D(B,M,M)},

where the horizontal H(B,M,M), vertical V (B,M,M) and depth D(B,M,M)

strategic thresholds of the (B,M,M) strategy are respectively, given by

H(B,M,M) = −αB
11(m1 − 1) + αM

12m2 + αM
13m3 + ϵ1(M)− ϵ1(B),

V (B,M,M) = −αB
21m1 + αM

22(m2 − 1) + αM
23m3 + ϵ2(M)− ϵ2(B),

D(B,M,M) = −αB
31m1 + αM

32m2 + αM
33(m3 − 1) + ϵ3(M)− ϵ3(B).

The Nash equilibrium prices interval NP (M,B,B) for which (M,B,B) is Nash

Equilibrium is the set

NP (M,B,B) = {p ∈ R : p ≥ x−H(M,B,B) and

p ≤ y − V (M,B,B) and

p ≤ z −D(M,B,B)},

where the horizontal H(M,B,B), vertical V (M,B,B) and depth D(M,B,B) strate-

gic thresholds of the (M,B,B) strategy are respectively, given by

H(M,B,B) = αM
11(m1 − 1)− αB

12m2 − αB
13m3 + ϵ1(M)− ϵ1(B),

V (M,B,B) = αM
21m1 − αB

22(m2 − 1)− αB
23m3 + ϵ2(M)− ϵ2(B),

D(M,B,B) = αM
31m1 − αB

32m2 − αB
33(m3 − 1) + ϵ3(M)− ϵ3(B).
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The Nash equilibrium prices interval NP (M,B,M) for which (M,B,M) is Nash

Equilibrium is the set

NP (M,B,M) = {p ∈ R : p ≥ x−H(M,B,M) and

p ≤ y − V (M,B,M) and

p ≥ z −D(M,B,M)},

where the horizontal H(M,B,M), vertical V (M,B,M) and depth D(M,B,M)

strategic thresholds of the (M,B,M) strategy are respectively, given by

H(M,B,M) = αM
11(m1 − 1)− αB

12m2 + αM
13m3 + ϵ1(M)− ϵ1(B),

V (M,B,M) = αM
21m1 − αB

22(m2 − 1) + αM
23m3 + ϵ2(M)− ϵ2(B),

D(M,B,M) = αM
31m1 − αB

32m2 + αM
33(m3 − 1) + ϵ3(M)− ϵ3(B).

The Nash equilibrium prices interval NP (M,M,B) for which (M,M,B) is Nash

Equilibrium is the set

NP (M,M,B) = {p ∈ R : p ≥ x−H(M,M,B) and

p ≥ y − V (M,M,B) and

p ≤ z −D(M,M,B)},

where the horizontal H(M,M,B), vertical V (M,M,B) and depth D(M,M,B)

strategic thresholds of the (M,M,B) strategy are respectively, given by

H(M,M,B) = αM
11(m1 − 1) + αM

12m2 − αB
13m3 + ϵ1(M)− ϵ1(B),

V (M,M,B) = αM
21m1 + αM

22(m2 − 1)− αB
23m3 + ϵ2(M)− ϵ2(B),

D(M,M,B) = αM
31m1 + αM

32m2 − αB
33(m3 − 1) + ϵ3(M)− ϵ3(B).
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The Nash equilibrium prices interval NP (M,M,M) for which (M,M,M) is Nash

Equilibrium is the set

NP (M,M,M) = {p ∈ R : p ≥ x−H(M,M,M) and

p ≥ y − V (M,M,M) and (4.10)

p ≥ z −D(M,M,M)},

where the horizontal H(M,M,M), vertical V (M,M,M) and depth D(M,M,M)

strategic thresholds of the (M,M,M) strategy are respectively, given by

H(M,M,M) = αM
11(m1 − 1) + αM

12m2 + αM
13m3 + ϵ1(M)− ϵ1(B),

V (M,M,M) = αM
21m1 + αM

22(m2 − 1) + αM
23m3 + ϵ2(M)− ϵ2(B),

D(M,M,M) = αM
31m1 + αM

32m2 + αM
33(m3 − 1) + ϵ3(M)− ϵ3(B).

Proof. The united strategy (B,B,B) is NE iff:

Π1(B;m1,m2,m3) ≥ Π1(M ;m1 − 1,m2,m3) and

Π2(B;m1,m2,m3) ≥ Π2(M ;m1,m2 − 1,m3) and (4.11)

Π3(B;m1,m2,m3) ≥ Π3(M ;m1,m2,m3 − 1).

Substituting the utility functions given in (4.3) and (4.4) in inequality (4.11) we

get

− pB + ωB
1 + αB

11(m1 − 1) + αB
12m2 + αB

13m3 + ϵ1(B) ≥ −pM + ωM
1

+ αM
11(m1 − (m1 − 1)− 1) + αM

12(m2 −m2) + αM
13(m3 −m3) + ϵ1(M) and

− pB + ωB
2 + αB

21m1 + αB
22(m2 − 1) + αB

23m3 + ϵ2(B) ≥ −pM + ωM
2 (4.12)

+ αM
21(m1 −m1) + αM

22(m2 − (m2 − 1)− 1) + αM
23(m3 −m3) + ϵ2(M) and

− pB + ωB
3 + αB

n1m1 + αB
32m2 + αB

33(m3 − 1) + ϵn(B) ≥ −pM + ωM
3

+ αM
n1(m1 −m1) + αM

32(m2 −m2) + αM
33(m3 − (m3 − 1)− 1) + ϵn(M).
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Rearrange the previous inequalities (4.12), we obtain

ωB
1 − ωM

1 ≥ pB − pM − αB
11(m1 − 1)− αB

12m2 − αB
13m3 + ϵ1(M)− ϵ1(B)

ωB
2 − ωM

2 ≥ pB − pM − αB
21m1 − αB

22(m2 − 1)− αB
23m3 + ϵ2(M)− ϵ2(B)

ωB
3 − ωM

3 ≥ pB − pM − αB
n1m1 − αB

32m2 − αB
33(m3 − 1) + ϵ3(M)− ϵ3(B).

Substituting the values of the relative decisions from Definitions 4.1 and 4.2 to-

gether with the strategic thresholdsH(B,B,B), V (B,B,B) andD(B,B,B) given

in (4.15), the last inequalities simplify to

x ≥ p+H(B,B,B) and

y ≥ p+ V (B,B,B) and (4.13)

z ≥ p+D(B,B,B).

Rearrange inequality in (4.13) we obtain

p ≤ x−H(B,B,B) and

p ≤ y − V (B,B,B) and

p ≤ z −D(B,B,B).

That is, since x, y, z are given, it follows that the Nash domain prices for which

(B,B,B) is NE is the interval

NP (B,B,B) = {p ∈ R : p ≤ min {x − H(B,B,B),

y − V (B,B,B),

z − D(B,B,B)}}.

The proof of the other cases follow similarly to the proof of the first case.
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Figure 4.1: The Nash equilibrium prices interval NP (B,B,B).

4.4 Monopoly versus duopoly

As a result of Theorem 4.4 first case, if p ∈ NP (B,B,B) then all tourist will

enjoy there time only in resort B and no one go to resorts M . Hence, there will

be a monopoly position for resort B while resort M goes to bankruptcy.

Remark 4.5. Based on Theorem 4.4 first case, we can represent the Nash Equi-

librium price interval as we shown in the following Figure 4.1, which is the set

NP (B,B,B) = {p ∈ R : p ≤ x−H(B,B,B) and (4.14)

p ≤ y − V (B,B,B) and

p ≤ z −D(B,B,B)}.

Remark 4.6. As a result of Theorem 4.4, we have two monopoly cases, one

for Beach resort and the second for Mountain resort, and this happened in the

following cases.

First, when (B,B,B) is Nash Equilibrium, then the (4.9) set can written as

NP (B,B,B) = {p ∈ R : p ≤ min {x − H(B,B,B),

y − V (B,B,B),

z − D(B,B,B)},
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where the monopoly here for Resort B.

Second, when (M,M,M) is Nash Equilibrium, then the (4.10) set can written as

NP (M,M,M) = {p ∈ R : p ≥ max {x − H(M,M,M),

y − V (M,M,M),

z − D(M,M,M)},

as a result, if p ∈ NP (M,M,M), then all tourists will enjoy there Holiday time

only in resort M and no one go to resort B. Hence, there will be a monopoly

position for Resort M while resort B goes to bankruptcy.

The other six cases given in Theorem (4.4) are representing duopoly between resort

B and resort M, where given the relative price p, both resorts are competitive in

the market.

4.5 Alternative resort model

In this section we can have similar results as in section 4.3 but for given relative

price p. See next remark

Remark 4.7. Note that we can derived similar result to Theorem 4.4 using the

following assumption:

Given the relative price p, then the Nash Equilibrium region is given by

NR(B,B,B) = {(x, y, z) ∈ R3 : x ≥ p+H(B,B,B),

y ≥ p+ V (B,B,B),

z ≥ p+ Z(B,B,B)}.

We represent this case in Figure 4.2.

So, for a given relative price p ∈ R, and for every (x, y, z) ∈ NR(B,B,B) we

are sure that all tourists go to Beach resort, and mountain resort will goes to

bankruptcy.
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Figure 4.2: The NR(B,B,B) region for given relative price p.

Theorem 4.8. Given the relative price p,

then the Nash Equilibrium region NR(B,B,B) for (B,B,B) strategy is given by

NR(B,B,B) = {(x, y, z) ∈ R3 : x ≥ p+H(B,B,B) and

y ≥ p+ V (B,B,B) and

z ≥ p+D(B,B,B)},

where the horizontal H(B,B,B), vertical V (B,B,B) and depth D(B,B,B) strate-

gic thresholds of the (B,B,B) strategy are respectively, given by

H(B,B,B) = −αB
11(m1 − 1)− αB

12m2 − αB
13m3 + ϵ1(M)− ϵ1(B),

V (B,B,B) = −αB
21m1 − αB

22(m2 − 1)− αB
23m3 + ϵ2(M)− ϵ2(B), (4.15)

D(B,B,B) = −αB
31m1 − αB

32m2 − αB
33(m3 − 1) + ϵ3(M)− ϵ3(B).

The Nash equilibrium region NR(B,B,M) for (B,B,M) strategy is given by

NR(B,B,M) = {(x, y, z) ∈ R3 : x ≥ p+H(B,B,M) and

y ≥ p+ V (B,B,M) and

z ≤ p+D(B,B,M)},
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where the horizontal H(B,B,M), vertical V (B,B,M) and depth D(B,B,M)

strategic thresholds of the (B,B,M) strategy are respectively, given by

H(B,B,M) = −αB
11(m1 − 1)− αB

12m2 + αM
13m3 + ϵ1(M)− ϵ1(B),

V (B,B,M) = −αB
21m1 − αB

22(m2 − 1) + αM
23m3 + ϵ2(M)− ϵ2(B),

D(B,B,M) = −αB
31m1 − αB

32m2 + αM
33(m3 − 1) + ϵ3(M)− ϵ3(B).

The Nash equilibrium region NR(B,M,B) for (B,M,B) strategy is given by

NR(B,M,B) = {(x, y, z) ∈ R3 : x ≥ p+H(B,M,B) and

y ≤ p+ V (B,M,B) and

z ≥ p+D(B,M,B)},

where the horizontal H(B,M,B), vertical V (B,M,B) and depth D(B,M,B) strate-

gic thresholds of the (B,M,B) strategy are respectively, given by

H(B,M,B) = −αB
11(m1 − 1) + αM

12m2 − αB
13m3 + ϵ1(M)− ϵ1(B),

V (B,M,B) = −αB
21m1 + αM

22(m2 − 1)− αB
23m3 + ϵ2(M)− ϵ2(B),

D(B,M,B) = −αB
31m1 + αM

32m2 − αB
33(m3 − 1) + ϵ3(M)− ϵ3(B).

The Nash equilibrium region NR(B,M,M) for (B,M,M) strategy is given by

NR(B,M,M) = {(x, y, z) ∈ R3 : x ≥ p+H(B,M,M) and

y ≤ p+ V (B,M,M) and

z ≤ p+D(B,M,M)},

where the horizontal H(B,M,M), vertical V (B,M,M) and depth D(B,M,M)

strategic thresholds of the (B,M,M) strategy are respectively, given by

H(B,M,M) = −αB
11(m1 − 1) + αM

12m2 + αM
13m3 + ϵ1(M)− ϵ1(B),

V (B,M,M) = −αB
21m1 + αM

22(m2 − 1) + αM
23m3 + ϵ2(M)− ϵ2(B),

D(B,M,M) = −αB
31m1 + αM

32m2 + αM
33(m3 − 1) + ϵ3(M)− ϵ3(B).
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The Nash equilibrium region NR(M,B,B) for (M,B,B) strategy is given by

NR(M,B,B) = {(x, y, z) ∈ R3 : x ≤ p+H(M,B,B) and

y ≥ p+ V (M,B,B) and

z ≥ p+D(M,B,B)},

where the horizontal H(M,B,B), vertical V (M,B,B) and depth D(M,B,B) strate-

gic thresholds of the (M,B,B) strategy are respectively, given by

H(M,B,B) = αM
11(m1 − 1)− αB

12m2 − αB
13m3 + ϵ1(M)− ϵ1(B),

V (M,B,B) = αM
21m1 − αB

22(m2 − 1)− αB
23m3 + ϵ2(M)− ϵ2(B),

D(M,B,B) = αM
31m1 − αB

32m2 − αB
33(m3 − 1) + ϵ3(M)− ϵ3(B).

The Nash equilibrium region NR(M,B,M) for (M,B,M) strategy is given by

NR(M,B,M) = {(x, y, z) ∈ R3 : x ≤ p+H(M,B,M) and

y ≥ p+ V (M,B,M) and

z ≤ p+D(M,B,M)},

where the horizontal H(M,B,M), vertical V (M,B,M) and depth D(M,B,M)

strategic thresholds of the (M,B,M) strategy are respectively, given by

H(M,B,M) = αM
11(m1 − 1)− αB

12m2 + αM
13m3 + ϵ1(M)− ϵ1(B),

V (M,B,M) = αM
21m1 − αB

22(m2 − 1) + αM
23m3 + ϵ2(M)− ϵ2(B),

D(M,B,M) = αM
31m1 − αB

32m2 + αM
33(m3 − 1) + ϵ3(M)− ϵ3(B).

The Nash equilibrium region NR(M,M,B) for (M,M,B) strategy is given by

NR(M,M,B) = {(x, y, z) ∈ R3 : x ≤ p+H(M,M,B) and

y ≤ p+ V (M,M,B) and

z ≥ p+D(M,M,B)},

where the horizontal H(M,M,B), vertical V (M,M,B) and depth D(M,M,B)

strategic thresholds of the (M,M,B) strategy are respectively, given by
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H(M,M,B) = αM
11(m1 − 1) + αM

12m2 − αB
13m3 + ϵ1(M)− ϵ1(B),

V (M,M,B) = αM
21m1 + αM

22(m2 − 1)− αB
23m3 + ϵ2(M)− ϵ2(B),

D(M,M,B) = αM
31m1 + αM

32m2 − αB
33(m3 − 1) + ϵ3(M)− ϵ3(B).

The Nash equilibrium region NR(M,M,M) for (M,M,M) strategy is given by

NR(M,M,M) = {(x, y, z) ∈ R3 : x ≤ p+H(M,M,M) and

y ≤ p+ V (M,M,M) and

z ≤ p+D(M,M,M)},

where the horizontal H(M,M,M), vertical V (M,M,M) and depth D(M,M,M)

strategic thresholds of the (M,M,M) strategy are respectively, given by

H(M,M,M) = αM
11(m1 − 1) + αM

12m2 + αM
13m3 + ϵ1(M)− ϵ1(B),

V (M,M,M) = αM
21m1 + αM

22(m2 − 1) + αM
23m3 + ϵ2(M)− ϵ2(B),

D(M,M,M) = αM
31m1 + αM

32m2 + αM
33(m3 − 1) + ϵ3(M)− ϵ3(B).
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Chapter 5

Conclusion

We have presented a generalized game theoretical model with finite number of

types of homogeneous players. We have characterized all pure strategies (united

and separated) and all mixed strategies that form Nash equilibria and determined

the corresponding Nash regions for each type of players. A special case of the

model is introduced when three types of players are considered. For this case, we

have showed geometrically in space all strategies that form Nash equilibria.

We have applied our model in industrial resort sector by considering three types

of tourists who will be distributed among two resorts: Beach resort and Moun-

tain resort. We have determine the Nash Equilibrium prices intervals for a given

preference for each type of tourists. Such Equilibrium Prices could lead to make

monopoly market for one resort while leading the other resort to go bankruptcy.

We have also characterized the Nash Equilibrium prices that make duopoly market

with high competition in prices.

In the future we will publish this work in a good and related journal. In addition,

this work could be extended in the future by considering finite number of decisions

instead of allowing only two alternative decisions. Such extension is not trivial to

do, however it will generalize the current model. Another extension could be to
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study the behavioral of human decision by allowing such behaviour for each type

of players to follow a certain nonlinear differential equation, so that we end up

solving system of nonlinear differential equations using numerical tools.
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Appendices

A Appendix A: Special cases for Lemma 3.9

Here are two cases of Lemma 3.9, when we have two types and three types of

players.

If n = 2 =⇒ SU(i1) ∈ {d1, d2} =⇒ ld1 ∈ {0,m1} ∀d ∈ D

SU(i2) ∈ {d1, d2} =⇒ ld2 ∈ {0,m2} ∀d ∈ D

=⇒ S2
U = {(0, 0), (0,m2), (m1, 0), (m1,m2)}

∥S2
U∥ = 4 = 22.

If n = 3 =⇒ SU(i1) ∈ {d1, d2} =⇒ ld1 ∈ {0,m1} ∀d ∈ D

SU(i2) ∈ {d1, d2} =⇒ ld2 ∈ {0,m2} ∀d ∈ D

SU(i3) ∈ {d1, d2} =⇒ ld3 ∈ {0,m3} ∀d ∈ D

=⇒ Sn
U = {(0, 0, 0), (0, 0,m3), (0,m2, 0), (0,m2,m3), (m1, 0,m3),

(m1,m2,m3), (m1,m2, 0), (m1, 0, 0)}

∥Sn
U∥ = 8 = 23.
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B Appendix B: Two cases for Theorem 3.12

We show the following two cases of Theorem 3.12, when we have two types and

three types of players.

If n = 1 =⇒ SU = (l1) and l1 ∈ {0,m1}

if l1 = m1 then the players of type t1 make decision d1 iff

Π1(d1,m1) ≥ Π1(d2,m1 − 1);

substituting the values of the utility from (3.5) and (3.6)

and rearrange terms, we get

x1 ≥ −αd1
11(m1 − 1) + ϵ1(d2)− ϵ1(d1)

using (3.11), one can show that

−αd1
11(m1 − 1) + ϵ1(d2)− ϵ1(d1) = X1(m1)

Hence, x1 ≥ X1(m1).

and if l1 = 0 then the players of type t1 make decision d2 iff

Π1(d2, 0) ≥ Π1(d1, 1);

substituting the values of the utility from (3.5) and (3.6)

and rearrange terms, we get

x1 ≤ αd2
11(m1 − 1).

using (3.12), one can show that

αd2
11(m1 − 1) + ϵ1(d2)− ϵ1(d1) = X1(0).

Hence, x1 ≤ X1(0).
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If n = 2 =⇒ SU = (l1, l2) and lj ∈ {0,mj}, j ∈ {1, 2}

if l1 = m1 and if l2 = m2

then players of type t1 make decision d1 iff

Π1(d1,m1,m2) ≥ Π1(d2,m1 − 1,m2);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get x1 ≥ −αd1
11(m1 − 1)− αd1

12m2 + ϵ1(d2)− ϵ1(d1)

using (3.11), one can show that

−αd1
11(m1 − 1)− αd1

12m2 + ϵ1(d2)− ϵ1(d1) = X1(m1,m2)

Hence, x1 ≥ X1(m1,m2)

and players of type t2 make decision d1 iff

Π2(d1,m1,m2) ≥ Π2(d2,m1,m2 − 1);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get x2 ≥ −αd1
22(m2 − 1)− αd1

21m1 + ϵ2(d2)− ϵ2(d1),

using (3.11), one can show that

−αd1
22(m2 − 1)− αd1

21m1 + ϵ2(d2)− ϵ2(d1) = X2(m1,m2)

Hence, x2 ≥ X2(m1,m2),

or if l2 = 0

then players of type t1 make decision d1 iff

Π1(d1,m1, 0) ≥ Π1(d2,m1 − 1, 0);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get x1 ≥ −αd1
11(m1 − 1) + αd2

12m2 + ϵ1(d2)− ϵ1(d1),

using (3.11), one can show that

−αd1
11(m1 − 1) + αd2

12m2 + ϵ1(d2)− ϵ1(d1) = X1(m1, 0)

Hence, x1 ≥ X1(m1, 0)

and players of type t2 make decision d2 iff

Π2(d2,m1, 0) ≥ Π2(d1,m1, 1);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get x2 ≤ αd2
22(m2 − 1)− αd1

21m1 + ϵ2(d2)− ϵ2(d1) = X2(m1, 0)

using (3.12), one can show that

αd2
22(m2 − 1)− αd1

21m1 + ϵ2(d2)− ϵ2(d1) = X2(m1, 0)

Hence, x2 ≤ X2(m1, 0)
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if l1 = 0 and if l2 = m2



then players of type t1 make decision d2 iff

Π1(d2, 0,m2) ≥ Π1(d1, 1,m2);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get x1 ≤ αd2
11(m1 − 1)− αd1

12m2 + ϵ1(d2)− ϵ1(d1)

using (3.12), one can show that

αd2
11(m1 − 1)− αd1

12m2 + ϵ1(d2)− ϵ1(d1) = X1(0,m2)

and players of type t2 make decision d1 iff

Π2(d1, 0,m2) ≥ Π2(d2, 0,m2 − 1);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get x2 ≥ −αd2
22(m2 − 1) + αd2

21m1 + ϵ2(d2)− ϵ2(d1)

using (3.11), one can show that

−αd2
22(m2 − 1) + αd2

21m1 + ϵ2(d2)− ϵ2(d1) = X2(0,m2)

Hence, x2 ≥ X2(0,m2)

or if l2 = 0

then players of type t1 make decision d2 iff

Π1(d2, 0, 0) ≥ Π1(d1, 1, 0);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get x1 ≤ αd2
11(m1 − 1) + αd2

12m2 + ϵ1(d2)− ϵ1(d1)

using (3.12), one can show that

αd2
11(m1 − 1) + αd2

12m2 + ϵ1(d2)− ϵ1(d1) = X1(0, 0)

Hence, x1 ≤ X1(0, 0)

and players of type t2 make decision d2 iff

Π2(d2, 0, 0) ≥ Π2(d1, 0, 1);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get x2 ≤ αd2
22(m2 − 1)− αd1

21m1 + ϵ2(d2)− ϵ2(d1),

using (3.12), one can show that

αd2
22(m2 − 1)− αd1

21m1 + ϵ2(d2)− ϵ2(d1) = X2(0, 0).

Hence, x2 ≤ X2(0, 0).
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If n = 3 =⇒ SU = (l1, l2, l3) and lj ∈ {0,mj}, j ∈ {1, 2, 3}

if l1 = m1 and l2 = m2 and if l3 = m3



then players of type t1 make decision d1 iff

Π1(d1,m1,m2,m3) ≥ Π1(d2,m1 − 1,m2,m3);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x1 ≥ −αd1
11(m1 − 1)− αd1

12m2 − αd1
13 + ϵ1(d2)− ϵ1(d1)

using (3.11), one can show that

−αd1
11(m1 − 1)− αd1

12m2 − αd1
13 + ϵ1(d2)− ϵ1(d1) = X1(m1,m2,m3).

Hence, x1 ≥ X1(m1,m2,m3).

and players of type t2 make decision d1 iff

Π2(d1,m1,m2,m3) ≥ Π2(d2,m1,m2 − 1,m3);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x2 ≥ −αd1
22(m2 − 1)− αd1

21m1 − αd1
23m3 + ϵ2(d2)− ϵ2(d1)

using (3.11), one can show that

−αd1
22(m2 − 1)− αd1

21m1 − αd1
23m3 + ϵ2(d2)− ϵ2(d1) = X2(m1,m2,m3)

Hence, x2 ≥ X2(m1,m2,m3)

and players of type t3 make decision d1 iff

Π3(d1,m1,m2,m3) ≥ Π3(d2,m1,m2,m3 − 1);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x3 ≥ −αd1
33(m3 − 1)− αd1

31m1 − αd1
32m2 + ϵ3(d2)− ϵ3(d1),

using (3.11), one can show that

−αd1
33(m3 − 1)− αd1

31m1 − αd1
32m2 + ϵ3(d2)− ϵ3(d1) = X3(m1,m2,m3).

Hence, x3 ≥ X3(m1,m2,m3)
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if l1 = m1 and l2 = m2 and if l3 = 0



then players of type t1 make decision d1 iff

Π1(d1,m1,m2, 0) ≥ Π1(d2,m1 − 1,m2, 0);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x1 ≥ −αd1
11(m1 − 1)− αd1

12m2 + αd2
13m3 + ϵ1(d2)− ϵ1(d1) = X1(m1,m2, 0)

using (3.11), one can show that

−αd1
11(m1 − 1)− αd1

12m2 + αd2
13m3 + ϵ1(d2)− ϵ1(d1) = X1(m1,m2, 0).

Hence, x1 ≥ X1(m1,m2, 0)

and players of type t2 make decision d1 iff

Π2(d1,m1,m2, 0) ≥ Π2(d2,m1,m2 − 1, 0);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x2 ≥ −αd1
22(m2 − 1)− αd1

21m1 + αd2
23m3 + ϵ2(d2)− ϵ2(d1),

using (3.11), one can show that

−αd1
22(m2 − 1)− αd1

21m1 + αd2
23m3 + ϵ2(d2)− ϵ2(d1) = X2(m1,m2, 0)

Hence, x2 ≥ X2(m1,m2, 0)

and players of type t3 make decision d2 iff

Π3(d2,m1,m2, 0) ≥ Π3(d1,m1,m2, 1);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x3 ≤ αd2
33(m3 − 1)− αd1

31m1 − αd1
32m2 + ϵ3(d2)− ϵ3(d1),

using (3.12), one can show that

αd2
33(m3 − 1)− αd1

31m1 − αd1
32m2 + ϵ3(d2)− ϵ3(d1) = X3(m1,m2, 0).

Hence, x3 ≤ X3(m1,m2, 0)
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if l1 = m1 and l2 = 0 then if l3 = m3



then players of type t1 make decision d1 iff

Π1(d1,m1, 0,m3) ≥ Π1(d2,m1 − 1, 0,m3);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x1 ≥ −αd1
11(m1 − 1) + αd2

12m2 − αd1
13m3 + ϵ1(d2)− ϵ1(d1),

using (3.11), one can show that

−αd1
11(m1 − 1) + αd2

12m2 − αd1
13m3 + ϵ1(d2)− ϵ1(d1) = X1(m1, 0,m3).

Hence, x1 ≥ X1(m1, 0,m3)

and players of type t2 make decision d2 iff

Π2(d2,m1, 0,m3) ≥ Π2(d1,m1, 1,m3);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x2 ≤ αd2
22(m2 − 1)− αd1

21m1 − αd1
23m3 + ϵ2(d2)− ϵ2(d1),

using (3.12), one can show that

αd2
22(m2 − 1)− αd1

21m1 − αd1
23m3 + ϵ2(d2)− ϵ2(d1) = X2(m1, 0,m3).

Hence, x2 ≤ X2(m1, 0,m3)

and players of type t3 make decision d1 iff

Π3(d1,m1, 0,m3) ≥ Π3(d2,m1, 0,m3 − 1);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x3 ≥ −αd1
33(m3 − 1)− αd1

31m1 + αd2
32m2 + ϵ3(d2)− ϵ3(d1),

using (3.11), one can show that

−αd1
33(m3 − 1)− αd1

31m1 + αd2
32m2 + ϵ3(d2)− ϵ3(d1) = X3(m1, 0,m3).

Hence, x3 ≥ X3(m1, 0,m3).
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if l1 = m1 and l2 = 0 then if l3 = 0



then players of type t1 make decision d1 iff

Π1(d1,m1, 0, 0) ≥ Π1(d2,m1 − 1, 0, 0);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x1 ≥ −αd1
11(m1 − 1) + αd2

12m2 + αd2
13m3 + ϵ1(d2)− ϵ1(d1),

using (3.11), one can show that

−αd1
11(m1 − 1) + αd2

12m2 + αd2
13m3 + ϵ1(d2)− ϵ1(d1) = X1(m1, 0, 0).

Hence, x1 ≥ X1(m1, 0, 0)

and players of type t2 make decision d2 iff

Π2(d2,m1, 0, 0) ≥ Π2(d1,m1, 1, 0);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x2 ≤ αd2
22(m2 − 1)− αd1

21m1 + αd2
23m3 + ϵ2(d2)− ϵ2(d1),

using (3.12), one can show that

αd2
22(m2 − 1)− αd1

21m1 + αd2
23m3 + ϵ2(d2)− ϵ2(d1) = X2(m1, 0, 0).

Hence, x2 ≤ X2(m1, 0, 0).

and players of type t3 make decision d2 iff

Π3(d2,m1, 0, 0) ≥ Π3(d2,m1, 0, 1);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x3 ≤ αd2
33(m3 − 1)− αd1

31m1 + αd2
32m2 + ϵ3(d2)− ϵ3(d1),

using (3.12), one can show that

αd2
33(m3 − 1)− αd1

31m1 + αd2
32m2 + ϵ3(d2)− ϵ3(d1) = X3(m1, 0, 0).

Hence, x3 ≤ X3(m1, 0, 0)
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if l1 = 0 and l2 = m2 and if l3 = m3



then players of type t1 make decision d2 iff

Π1(d2, 0,m2,m3) ≥ Π1(d1, 1,m2,m3);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x1 ≤ αd2
11(m1 − 1)− αd1

12m2 − αd1
13m3 + ϵ1(d2)− ϵ1(d1),

using (3.12), one can show that

αd2
11(m1 − 1)− αd1

12m2 − αd1
13m3 + ϵ1(d2)− ϵ1(d1) = X1(0,m2,m3).

Hence, x1 ≤ X1(0,m2,m3).

and players of type t2 make decision d1 iff

Π2(d1, 0,m2,m3) ≥ Π2(d2, 0,m2 − 1,m3);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x2 ≥ −αd1
22(m2 − 1) + αd2

21m1 − αd1
23m3 + ϵ2(d2)− ϵ2(d1),

using (3.11), one can show that

−αd1
22(m2 − 1) + αd2

21m1 − αd1
23m3 + ϵ2(d2)− ϵ2(d1) = X2(0,m2,m3).

Hence, x2 ≥ X2(0,m2,m3).

and players of type t3 make decision d1 iff

Π3(d1, 0,m2,m3) ≥ Π3(d2, 0,m2,m3 − 1);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x3 ≥ −αd1
33(m3 − 1) + αd2

31m1 − αd1
32m2 + ϵ3(d2)− ϵ3(d1),

using (3.11), one can show that

−αd1
33(m3 − 1) + αd2

31m1 − αd1
32m2 + ϵ3(d2)− ϵ3(d1) = X3(0,m2,m3).

Hence, x3 ≥ X3(0,m2,m3)
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if l1 = 0 and l2 = m2 and if l3 = 0



then players of type t1 make decision d2 iff

Π1(d2, 0,m2, 0) ≥ Π1(d1, 1,m2, 0);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x1 ≤ αd2
11(m1 − 1)− αd1

12m2 + αd2
13m3 + ϵ1(d2)− ϵ1(d1),

using (3.12), one can show that

αd2
11(m1 − 1)− αd1

12m2 + αd2
13m3 + ϵ1(d2)− ϵ1(d1) = X1(0,m2, 0).

Hence, x1 ≤ X1(0,m2, 0).

and players of type t2 make decision d1 iff

Π2(d1, 0,m2, 0) ≥ Π2(d2, 0,m2 − 1, 0);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x2 ≥ −αd1
22(m2 − 1) + αd2

21m1 + αd2
23m3 + ϵ2(d2)− ϵ2(d1),

using (3.11), one can show that

−αd1
22(m2 − 1) + αd2

21m1 + αd2
23m3 + ϵ2(d2)− ϵ2(d1) = X2(0,m2, 0).

Hence, x2 ≥ X2(0,m2, 0).

and players of type t3 make decision d2 iff

Π3(d2, 0,m2, 0) ≥ Π3(d1, 0,m2, 1);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x3 ≤ αd2
33(m3 − 1) + αd2

31m1 − αd1
32m2 + ϵ3(d2)− ϵ3(d1),

using (3.12), one can show that

αd2
33(m3 − 1) + αd2

31m1 − αd1
32m2 + ϵ3(d2)− ϵ3(d1) = X3(0,m2, 0).

Hence, x3 ≤ X3(0,m2, 0)
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if l1 = 0 and l2 = 0 then if l3 = m3



then players of type t1 make decision d2 iff

Π1(d2, 0, 0,m3) ≥ Π1(d1, 1, 0,m3);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x1 ≤ αd2
11(m1 − 1) + αd2

12m2 − αd1
13m3 + ϵ1(d2)− ϵ1(d1),

using (3.12), one can show that

αd2
11(m1 − 1) + αd2

12m2 − αd1
13m3 + ϵ1(d2)− ϵ1(d1) = X1(0, 0,m3).

Hence, x1 ≤ X1(0, 0,m3)

and players of type t2 make decision d2 iff

Π2(d2, 0, 0,m3) ≥ Π2(d1, 0, 1,m3);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x2 ≤ αd2
22(m2 − 1) + αd2

21m1 − αd1
23m3 + ϵ2(d2)− ϵ2(d1),

using (3.12), one can show that

αd2
22(m2 − 1) + αd2

21m1 − αd1
23m3 + ϵ2(d2)− ϵ2(d1) = X2(0, 0,m3).

Hence, x2 ≤ X2(0, 0,m3).

and players of type t3 make decision d1 iff

Π3(d1, 0, 0,m3) ≥ Π3(d2, 0, 0,m3 − 1);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x3 ≥ −αd1
33(m3 − 1) + αd2

31m1 + αd2
32m2 + ϵ3(d2)− ϵ3(d1),

using (3.11), one can show that

−αd1
33(m3 − 1) + αd2

31m1 + αd2
32m2 + ϵ3(d2)− ϵ3(d1) = X3(0, 0,m3).

Hence, x3 ≥ X3(0, 0,m3).
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if l1 = 0 and l2 = m2 and if l3 = 0



then players of type t1 make decision d2 iff

Π1(d2, 0, 0, 0) ≥ Π1(d1, 1, 0, 0);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x1 ≤ αd2
11(m1 − 1) + αd2

12m2 + αd2
13m3 + ϵ1(d2)− ϵ1(d1),

using (3.12), one can show that

αd2
11(m1 − 1) + αd2

12m2 + αd2
13m3 + ϵ1(d2)− ϵ1(d1) = X1(0, 0, 0).

Hence, x1 ≤ X1(0, 0, 0).

and players of type t2 make decision d2 iff

Π2(d2, 0, 0, 0) ≥ Π2(d1, 0, 1, 0);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x2 ≤ αd2
22(m2 − 1) + αd2

21m1 + αd2
23m3 + ϵ2(d2)− ϵ2(d1),

using (3.12), one can show that

αd2
22(m2 − 1) + αd2

21m1 + αd2
23m3 + ϵ2(d2)− ϵ2(d1) = X2(0, 0, 0).

Hence, x2 ≤ X2(0, 0, 0).

and players of type t3 make decision d2 iff

Π3(d2, 0, 0, 0) ≥ Π3(d2, 0, 0, 1);

substituting the values of the utility from (3.5) and (3.6) and rearrange terms,

we get

x3 ≤ αd2
33(m3 − 1) + αd2

31m1 + αd2
32m2 + ϵ3(d2)− ϵ3(d1),

using (3.12), one can show that

αd2
33(m3 − 1) + αd2

31m1 + αd2
32m2 + ϵ3(d2)− ϵ3(d1) = X3(0, 0, 0).

Hence, x3 ≤ X3(0, 0, 0).
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C Appendix C: Special cases of Theorem 3.12

We have here more special cases of Theorem 3.12.

Lemma .1. A united strategy SU = (0,m2, · · · ,mn) ∈ Rn is Nash Equilibrium iff

x ∈ NR(0,m2, · · · ,mn), where the Nash region NR(0,m2, · · · ,mn) is given by

NR(0,m2, · · · ,mn) = {x ∈ Rn : x1 ≤ X1(0,m2, · · · ,mn) and

x2 ≥ X2(0,m2, · · · ,mn) and

...

xn ≥ Xn(0,m2, · · · ,mn)}.

Proof. Consider the following united strategy: SU = (0,m2, · · · ,mn) ∈ Rn, where

all players with type t1 make the decision d2, and all players of types t2, t3, · · · , tn

make decision d1. The united strategy SU = (0,m2, · · · ,mn) is NE iff

Π1(d1; 1,m2, · · · ,mn) ≤ Π1(d2; 0,m2, · · · ,mn) and

Π2(d1; 0,m2, · · · ,mn) ≥ Π2(d2; 0,m2 − 1, · · · ,mn) and

... (1)

Πn(d1; 0,m2, · · · ,mn) ≥ Πn(d2; 0,m2, · · · ,mn − 1).

Substituting the utility functions given in (3.5) and (3.6) in inequality (1), then

we obtain

ωd1
1 + αd1

11(1− 1) + αd1
12m2 + · · ·+ αd1

1nmn + ϵ1(d1) ≤

ωd2
1 + αd2

11(m1 − 1) + αd2
12(m2 −m2) + · · ·+ αd2

1n(mn −mn) + ϵ1(d2) and

ωd1
2 + αd1

21(0) + αd1
22(m2 − 1) + · · ·+ αd1

2nmn + ϵ2(d1) ≥

ωd2
2 + αd2

21(m1 − 0) + αd2
22(m2 − (m2 − 1)− 1) + · · ·+ αd2

2n(mn −mn) + ϵ2(d2) and

... (2)

ωd1
n + αd1

n1(0) + αd1
n2m2 + · · ·+ αd1

nn(mn − 1) + ϵn(d1) ≥

ωd2
n + αd2

n1(m1 − 0) + αd2
n2(m2 −m2) + · · ·+ αd2

nn(mn − (mn − 1)− 1) + ϵn(d2).
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Rearrange the previous inequalities (2) we get

ωd1
1 − ωd2

1 ≤ αd2
11(m1 − 1)− αd1

12m2 − · · · − αd1
1nmn + ϵ1(d2)− ϵ1(d1) and

ωd1
2 − ωd2

2 ≥ αd2
21m1 − αd2

22(m2 − 1)− · · · − αd1
2nmn + ϵ2(d2)− ϵ2(d1) and

...

ωd1
n − ωd2

n ≥ αd2
n1m1 − αd1

n2m2 − · · · − αd1
nn(mn − 1) + ϵn(d2)− ϵn(d1).

Substituting the values of the relative decisions from Definition 3.5, the last in-

equalities simplifying to

x1 ≤ X1(0,m2, · · · ,mn) and

x2 ≥ X2(0,m2, · · · ,mn) and

...

xn ≥ Xn(0,m2, · · · ,mn),

where the strategic thresholds of the SU = (0,m2, · · · ,mn) strategy are, respec-

tively, given by

X1(0,m2, · · · ,mn) = αd2
11(m1 − 1)− αd1

12m2 − · · · − αd1
1nmn + ϵ1(d2)− ϵ1(d1)

X2(0,m2, · · · ,mn) = αd2
21m1 − αd2

22(m2 − 1)− · · · − αd1
2nmn + ϵ2(d2)− ϵ2(d1)

...

Xn(0,m2, · · · ,mn) = αd2
n1m1 − αd1

n2m2 − · · · − αd1
nn(mn − 1) + ϵn(d2)− ϵn(d1).

Hence, the corresponding Nash region is

NR(0,m2, · · · ,mn) = {x ∈ Rn : x1 ≤ X1(0,m2, · · · ,mn) and

x2 ≥ X2(0,m2, · · · ,mn) and

...

xn ≥ Xn(0,m2, · · · ,mn)}.
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Lemma .2. A united strategy SU = (m1,m2, 0 · · · , 0) ∈ Rn is Nash Equilibrium iff

x ∈ NR(m1,m2, 0 · · · , 0), where the Nash region NR(m1,m2, 0 · · · , 0) is given

by

NR(m1,m2, 0 · · · , 0) = {x ∈ Rn : x1 ≥ X1(m1,m2, 0 · · · , 0) and

x2 ≥ X2(m1,m2, 0 · · · , 0) and

x3 ≤ X3(m1,m2, 0 · · · , 0) and

...

xn ≤ Xn(m1,m2, 0 · · · , 0)}.

Proof. Consider the following united strategy: SU = (m1,m2, 0 · · · , 0) ∈ Rn,

where all players of types t1 and t2 make the decision d1 and all players of types

t3, t4, · · · , tn make the decision d2. The united strategy SU = (m1,m2, 0 · · · , 0) is

NE iff

Π1(d1;m1,m2, 0, 0, · · · , 0) ≥ Π1(d2;m1 − 1,m2, 0, · · · , 0) and

Π2(d1;m1,m2, 0, 0, · · · , 0) ≥ Π2(d2;m1,m2 − 1, 0, · · · , 0) and

Π3(d1;m1,m2, 1, 0, · · · , 0) ≤ Π3(d2;m1,m2, 0, · · · , 0) and (3)

...

Πn(d1;m1,m2, 0 · · · , 0, 1) ≤ Πn(d2;m1,m2, 0 · · · , 0).
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Substituting the utility functions given in (3.5) and (3.6) in inequality (3), then

we obtain

ωd1
1 + αd1

11(m1 − 1) + αd1
12m2 + αd1

13(0) · · ·+ αd1
1n(0) + ϵ1(d1) ≥ ωd2

1

+ αd2
11(m1 − (m1 − 1)− 1) + αd2

12(m2 −m2) + αd2
13(m3 − 0) + · · ·+ αd2

1n(mn − 0)

+ ϵ1(d2) and

ωd1
2 + αd1

21m1 + αd1
22(m2 − 1) + αd1

23(0) + · · ·+ αd1
2n(0) + ϵ2(d1) ≥ ωd2

2 + αd2
21(m1 −m1)

+ αd2
22(m2 − (m2 − 1)− 1) + αd2

23(m3 − 0) + · · ·+ αd2
2n(mn − 0) + ϵ2(d2) and (4)

ωd1
3 + αd1

31m1 + αd1
32m2 + αd1

33(1− 1) · · ·+ αd1
3n(0) + ϵ3(d1) ≤ ωd2

3 + αd2
31(m1 −m1)

+ αd2
32(m2 −m2) + αd2

33(m3 − 1) + · · ·+ αd2
3n(mn − 0) + ϵ3(d2) and

...

ωd1
n + αd1

n1m1 + αd1
n2m2 + αd1

n3(0) · · ·+ αd1
nn(1− 1) + ϵn(d1) ≤ ωd2

n + αd2
n1(m1 −m1)

+ αd2
n2(m2 −m2) + αd2

n3(m3 − 0) + · · ·+ αd2
nn(mn − 1) + ϵn(d2).

Rearrange the previous inequalities (4), we get

ωd1
1 − ωd2

1 ≥− αd1
11(m1 − 1)− αd1

12m2 + αd2
13m3 + · · ·+ αd2

1nmn + ϵ1(d2)− ϵ1(d1) and

ωd1
2 − ωd2

2 ≥− αd1
21m1 − αd1

22(m2 − 1) + αd2
23m3 + · · ·+ αd2

2nmn + ϵ2(d2)− ϵ2(d1) and

ωd1
3 − ωd2

3 ≤− αd1
31m1 − αd1

32m2 + αd2
33(m3 − 1) + · · ·+ αd2

3nmn + ϵ3(d2)− ϵ3(d1) and

...

ωd1
n − ωd2

n ≤− αd1
n1m1 − αd1

n2m2 + αd2
n3m3 + · · ·+ αd2

nn(mn − 1) + ϵn(d2)− ϵn(d1).

Substituting the values of the relative decisions from Definition 3.5, the last in-

equalities simplifying to

x1 ≥ X1(m1,m2, 0, · · · , 0) and

x2 ≥ X2(m1,m2, 0, · · · , 0) and

x3 ≤ X3(m1,m2, 0, · · · , 0) and

...

xn ≤ Xn(m1,m2, 0, · · · , 0),
104



where the strategic thresholds of the SU = (m1,m2, 0, · · · , 0) strategy are, respec-

tively, given by

X1(m1,m2, 0, · · · , 0) =− αd1
11(m1 − 1)− αd1

12m2 + αd2
13m3 + · · ·+ αd2

1nmn

+ ϵ1(d2)− ϵ1(d1) and

X2(m1,m2, 0, · · · , 0) =− αd1
21m1 − αd1

22(m2 − 1) + αd2
23m3 + · · ·+ αd2

2nmn

+ ϵ2(d2)− ϵ2(d1) and

X3(m1,m2, 0, · · · , 0) =− αd1
31m1 − αd1

32m2 + αd2
33(m3 − 1) + · · ·+ αd2

3nmn

+ ϵ3(d2)− ϵ3(d1) and

...

Xn(m1,m2, 0, · · · , 0) =− αd1
n1m1 − αd1

n2m2 + αd2
n3m3 + · · ·+ αd2

nn(mn − 1)

+ ϵn(d2)− ϵn(d1).

Hence,

NR(m1,m2, 0 · · · , 0) = {x ∈ Rn : x1 ≥ X1(m1,m2, 0, · · · , 0) and

x2 ≥ X2(m1,m2, 0, · · · , 0) and

x3 ≤ X3(m1,m2, 0, · · · , 0) and

...

xn ≤ Xn(m1,m2, 0, · · · , 0)}.
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D Appendix D: Simulation using Mathematica

In this appendix we will show mathematica codes used to draw the figures in three

dimensions as they are shown in this Thesis.

Code for Figure 3.2.

SetOptions[Plot , BaseStyle -> {FontFamily -> "Times", FontSize -> 14}];

A=Graphics3D [{ Arrowheads[Large],

Arrow[{{-5,-5, -5}, {4, -5,-5}}],Text["x",{5,-5,-5}], Arrow[{{-5,-5, -5},

{-5, 4, -5}}], Text["y",{-5,5,-5}], Arrow[{{-5,-5, -5}, {-5, -5, 4}}],

Text["z",{-5,-5,5}]},Boxed ->False];

p1 = RegionPlot3D[

x >-3 && y > -3 && z > -3, {x, -6, 6}, {y, -6, 6}, {z, -6, 6}, Boxed -> False ,

PlotStyle -> Directive[Yellow , Opacity [0.5‘]], Mesh -> None ,

AxesEdge -> {{0, 0}, {0, 0}, {0, 0}},

AxesLabel -> {Style["x",FontSize ->16,FontWeight ->Bold],

Style["y",FontSize ->16,FontWeight ->Bold], Style["z",FontSize ->16,

FontWeight ->Bold]}, PlotRange -> {{-6, 5}, {-6, 5}, {-6, 5}}, Ticks -> None];

X=Graphics3D [{ Text[Style["X(d1 ,d1,d1)",FontSize ->12], {-3, -5, -5}, {0, 4}]}];

Y=Graphics3D [{ Text[Style["Y(d1 ,d1,d1)",FontSize ->12], {-5, -3, -5}, { -0.4 , -2}]}];

Z=Graphics3D [{ Text[Style["Z(d1 ,d1,d1)",FontSize ->12], {-5, -5, -3}, {1, 2}]}];

pi1=Graphics3D [{ PointSize [0.02] , Point [{-3,-5,-5}]}];

pi2=Graphics3D [{ PointSize [0.02] , Point [{-5,-3,-5}]}];

pi3=Graphics3D [{ PointSize [0.02] , Point [{-5,-5,-3}]}];

Show[A,p1,pi1 ,pi2 ,pi3 ,X,Y,Z]
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Code for Figure 3.3.

SetOptions[Plot ,

BaseStyle -> {FontFamily -> "Times", FontSize -> 14}];

A = Graphics3D [{ Arrowheads[Large],

Arrow [{{0, 0, 0}, {0, 6, 0}}], Text["y", {0, 7, 0}],

Arrow [{{0, 0, 0}, {0, 0, 6}}], Text["z", {0, 0, 7}]},

Boxed -> False , AxesEdge -> {{-1, 0}, None , None }];

B = Graphics3D [{ Arrowheads[Tiny],

Arrow [{{0, 0, 0}, {-6, 0, 0}}], Text["x", {-3, -1, 0}]},

Boxed -> False , AxesEdge -> {{-1, 0}, None , None }];

p2 = RegionPlot3D[

x < -1 && y > 1 && z > 1, {x, -6, 0}, {y, 0, 6}, {z, 0, 6},

Boxed -> False , PlotStyle -> Directive[Red , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {{-1, 0}, None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"}, Ticks -> None];

X =Graphics3D [{

Text[Style["X(d2 ,d1,d1)", FontSize -> 12], {-1, 0, 0}, {.5,

1}]}];

Y =Graphics3D [{

Text[Style["Y(d2 ,d1,d1)", FontSize -> 12], {0, 1,

0}, {-1, -1}]}];

Z =Graphics3D [{

Text[Style["Z(d2 ,d1,d1)", FontSize -> 12], {0, 0, 1}, {1, -1}]}];

pi1 =Graphics3D [{ PointSize [0.02] , Point[{-1, 0, 0}]}];

pi2 =Graphics3D [{ PointSize [0.02] , Point[{0, 1, 0}]}];

pi3 =Graphics3D [{ PointSize [0.02] , Point[ {0, 0, 1}]}];

Show[A, p2 , B, X, Y, Z, pi1 , pi2 , pi3]
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Code for Figure 3.4.

SetOptions[Plot ,

BaseStyle -> {FontFamily -> "Times", FontSize -> 14}];

A = Graphics3D [{ Arrowheads[Large],

Arrow [{{0, 0, 0}, {0, 0, 6}}], Text["z", {0, 0, 7}]},

Boxed -> False , AxesEdge -> {{-1, 0}, None , None }];

B = Graphics3D [{ Arrowheads[Tiny],

Arrow [{{0, 0, 0}, {-6, 0, 0}}], Text["x", {-4, 1, 0}],

Arrow [{{0, 0, 0}, {0, -6, 0}}], Text["y", {0, -7, 0}]},

Boxed -> False];

p2 = RegionPlot3D[

x < -1 && y > 1 && z > 1, {x, -6, 0}, {y, 0, 6}, {z, 0, 6},

Boxed -> False , PlotStyle -> Directive[Red , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {{-1, 0}, None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"}, Ticks -> None];

p3 = RegionPlot3D[

x < -1 && y < -1 && z > 1, {x, -6, 0}, {y, -6, 0}, {z, 0, 6},

Boxed -> False , PlotStyle -> Directive[Pink , Opacity [0.3‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

X =Graphics3D [{

Text[Style["X(d2 ,d2,d1)", FontSize -> 12], {-1, 0, 0}, {.5,

1}]}];

Y =Graphics3D [{

Text[Style["Y(d2 ,d2,d1)", FontSize -> 12], {0, -1, 0}, {-1,

1.5}]}];

Z =Graphics3D [{

Text[Style["Z(d2 ,d2,d1)", FontSize -> 12], {0, 0,

1}, {-1, -1}]}];

pi1 =Graphics3D [{ PointSize [0.02] , Point[{-1, 0, 0}]}];

pi2 =Graphics3D [{ PointSize [0.02] , Point[{0, -1, 0}]}];

pi3 =Graphics3D [{ PointSize [0.02] , Point[ {0, 0, 1}]}];

Show[A, B, p3, X, Y, Z, pi1 , pi2 , pi3]
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Code for Figure 3.5.

SetOptions[Plot ,

BaseStyle -> {FontFamily -> "Times", FontSize -> 14}];

A = Graphics3D [{ Arrowheads[Large], Arrow [{{0, 0, 0}, {6, 0, 0}}],

Text["x", {7, 0, 0}], Arrow [{{0, 0, 0}, {0, 0, 6}}],

Text["z", {0, 0, 7}] } , Boxed -> False ,

AxesEdge -> {{-1, 0}, None , None }];

B = Graphics3D [{ Arrowheads[Tiny], Arrow [{{0, 0, 0}, { 0, -6, 0}}],

Text["y", {0, 7, 0}]} , Boxed -> False];

p4 = RegionPlot3D[

x > 1 && y < -1 && z > 1, {x, 0, 6}, {y, -6, 0}, {z, 0, 6},

Boxed -> False ,

PlotStyle -> Directive[Blue , Opacity [0.3‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

X = Graphics3D [{

Text[Style["X(d1 ,d2,d1)", FontSize -> 12], {1, 0, 0}, {0, -1}]}];

Y = Graphics3D [{

Text[Style["Y(d1 ,d2,d1)", FontSize -> 12], {0, -1,

0}, {0, -1}]}];

Z = Graphics3D [{

Text[Style["Z(d1 ,d2,d1)", FontSize -> 12], {0, 0, 1}, {-1, 1}]}];

pi1 = Graphics3D [{ PointSize [0.02] , Point [{1, 0, 0}]}];

pi2 = Graphics3D [{ PointSize [0.02] , Point [{0, -1, 0}]}];

pi3 = Graphics3D [{ PointSize [0.02] , Point[ {0, 0, 1}]}];

Show[A, B, p4, X, Y, Z, pi1 , pi2 , pi3]
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Code for Figure 3.6.

SetOptions[Plot ,

BaseStyle -> {FontFamily -> "Times", FontSize -> 14}];

A = Graphics3D [{ Arrowheads[Large], Arrow [{{0, 0, 0}, {6, 0, 0}}],

Text["x", {7, 0, 0}], Arrow [{{0, 0, 0}, {0, 6, 0}}],

Text["y", {0, 7, 0}]} , Boxed -> False ,

AxesEdge -> {{-1, 0}, None , None }];

B = Graphics3D [{ Arrowheads[Tiny],

Arrow [{{0, 0, 0}, {0, 0, - 6}}], Text["z", {0, 0, -7}]} ,

Boxed -> False];

p5 = RegionPlot3D[

x > 1 && y > 1 && z < - 1, {x, 0, 6}, {y, 0, 6}, {z, -6,

0},

Boxed -> False ,

PlotStyle -> Directive[Green , Opacity [0.3‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

X =Graphics3D [{

Text[Style["X(d1 ,d2,d2)", FontSize -> 12], {1, 0, 0}, {0, -1}]}];

Y =Graphics3D [{

Text[Style["Y(d1 ,d2,d2)", FontSize -> 12], {0, 1, 0}, {0, -1}]}];

Z = Graphics3D [{

Text[Style["Z(d1 ,d2,d2)", FontSize -> 12], {0, 0, -1}, {-1,

1}]}];

pi1 = Graphics3D [{ PointSize [0.02] , Point [{1, 0, 0}]}];

pi2 = Graphics3D [{ PointSize [0.02] , Point [{0, 1, 0}]}];

pi3 = Graphics3D [{ PointSize [0.02] , Point[ {0, 0, -1}]}];

Show[A, B, p5, X, Y, Z, pi1 , pi2 , pi3]
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Code for Figure 3.7.

SetOptions[Plot ,

BaseStyle -> {FontFamily -> "Times", FontSize -> 14}];

A = Graphics3D [{ Arrowheads[Large], Arrow [{{0, 0, 0}, {0, 6, 0}}],

Text["y", {0, 7, 0}]}

, Boxed -> False , AxesEdge -> {{-1, 0}, None , None }];

B = Graphics3D [{ Arrowheads[Tiny], Arrow [{{0, 0, 0}, {-6, 0, 0}}],

Text["x", {-7, 0, 0}],

Arrow [{{0, 0, 0}, {0, 0, - 6}}], Text["z", {0, 0, -7}]} ,

Boxed -> False];

p6 = RegionPlot3D[

x < -1 && y > 1 && z < - 1, {x, -6, 0}, {y, 0, 6}, {z, -6, 0},

Boxed -> False , PlotStyle -> Directive[Brown , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

X =Graphics3D [{

Text[Style["X(d2 ,d1,d2)", FontSize -> 12], {-1, 0, 0}, {-1,

1.5}]}];

Y =Graphics3D [{

Text[Style["Y(d2 ,d1,d2)", FontSize -> 12], {0, 1,

0}, {-0.5, -1.5}]}];

Z =Graphics3D [{

Text[Style["Z(d2 ,d1,d2)", FontSize -> 12], {0, 0, -1}, {-1,

1}]}];

pi1 =Graphics3D [{ PointSize [0.02] , Point[{-1, 0, 0}]}];

pi2 =Graphics3D [{ PointSize [0.02] , Point[{0, 1, 0}]}];

pi3 =Graphics3D [{ PointSize [0.02] , Point[ {0, 0, -1}]}];

Show[A, B, p6, X, Y, Z, pi1 , pi2 , pi3]
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Code for Figure 3.8.

SetOptions[Plot ,

BaseStyle -> {FontFamily -> "Times", FontSize -> 14}];

A = Graphics3D [{ Arrowheads[Large], Arrow [{{0, 0, 0}, {0, 6, 0}}],

Text["y", {0, 7, 0}]}

, Boxed -> False , AxesEdge -> {{-1, 0}, None , None }];

B = Graphics3D [{ Arrowheads[Tiny], Arrow [{{0, 0, 0}, {-6, 0, 0}}],

Text["x", {-7, 0, 0}], Arrow [{{0, 0, 0}, {0, -6, 0}}],

Text["y", {0, -7, 0}] ,

Arrow [{{0, 0, 0}, {0, 0, - 6}}], Text["z", {0, 0, -7}]} ,

Boxed -> False];

p7 = RegionPlot3D[

x < -1 && y < -1 && z < - 1, {x, -6, 0}, {y, -6, 0}, {z, -6,

0},

Boxed -> False ,

PlotStyle -> Directive[Magenta , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

X =Graphics3D [{

Text[Style["X(d2 ,d2,d2)", FontSize -> 12], {-1, 0,

0}, {0, -1}]}];

Y =Graphics3D [{

Text[Style["Y(d2 ,d2,d2)", FontSize -> 12], {0, -1,

0}, {0, -1}]}];

Z =Graphics3D [{

Text[Style["Z(d2 ,d2,d2)", FontSize -> 12], {0, 0, -1}, {-1,

1}]}];

pi1 =Graphics3D [{ PointSize [0.02] , Point[{-1, 0, 0}]}];

pi2 =Graphics3D [{ PointSize [0.02] , Point[{0, -1, 0}]}];

pi3 =Graphics3D [{ PointSize [0.02] , Point[ {0, 0, -1}]}];

Show[B, p7 , X, Y, Z, pi1 , pi2 , pi3]
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Code for Figure 3.9.

SetOptions[Plot ,

BaseStyle -> {FontFamily -> "Times", FontSize -> 14}];

A = Graphics3D [{ Arrowheads[Large], Arrow [{{0, 0, 0}, {6, 0, 0}}],

Text["x", {7, 0, 0}]}

, Boxed -> False , AxesEdge -> {{-1, 0}, None , None }];

B = Graphics3D [{ Arrowheads[Tiny], Arrow [{{0, 0, 0}, {0, -6, 0}}],

Text["y", {0, -7, 0}] ,

Arrow [{{0, 0, 0}, {0, 0, - 6}}], Text["z", {0, 0, -7}]} ,

Boxed -> False];

p8 = RegionPlot3D[

x > 1 && y < -1 && z < - 1, {x, 0, 6}, {y, -6, 0}, {z, -6, 0},

Boxed -> False , PlotStyle -> Directive[Cyan , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

X =Graphics3D [{

Text[Style["X(d1 ,d2,d2)", FontSize -> 12], {1, 0, 0}, {0, -1}]}];

Y =Graphics3D [{

Text[Style["Y(d1 ,d2,d2)", FontSize -> 12], {0, -1,

0}, {0, -1}]}];

Z =Graphics3D [{

Text[Style["Z(d1 ,d2,d2)", FontSize -> 12], {0, 0, -1}, {-1,

1}]}];

pi1 =Graphics3D [{ PointSize [0.02] , Point[{1, 0, 0}]}];

pi2 =Graphics3D [{ PointSize [0.02] , Point[{0, -1, 0}]}];

pi3 =Graphics3D [{ PointSize [0.02] , Point[ {0, 0, -1}]}];

Show[A, B, p8, X, Y, Z, pi1 , pi2 , pi3]
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Code for Figure 3.10.

p1 = RegionPlot3D[

x > 1 && y > 1 && z > 1, {x, -6, 6}, {y, -6, 6}, {z, -6, 6},

Boxed -> False ,

PlotStyle -> Directive[Yellow , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {{0, 0}, {0, 0}, {0, 0}},

Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

p2 = RegionPlot3D[ x < -1 && y > 1 && z > 1, {x, -6, 6}, {y, -6, 6}, {z, -6, 6},

Boxed -> False , PlotStyle -> Directive[Red , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {{0, 0}, {0, 0}, {0, 0}}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

p3 = RegionPlot3D[

x > 1 && y < -1 && z > 1, {x, -6, 6}, {y, -6, 6}, {z, -6, 6},

Boxed -> False ,

PlotStyle -> Directive[Blue , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {{0, 0}, {0, 0}, {0, 0}}, Axes -> True ,

AxesLabel -> {"x", "y", "z"}, PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}},

Ticks -> None];

p4 = RegionPlot3D[

x > 1 && y > 1 && z < -1, {x, -6, 6}, {y, -6, 6}, {z, -6, 6},

Boxed -> False ,

PlotStyle -> Directive[Green , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {{0, 0}, {0, 0}, {0, 0}}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

p5 = RegionPlot3D[

x < -1 && y < -1 && z > 1, {x, -6, 6}, {y, -6, 6}, {z, -6,

6},

Boxed -> False ,

PlotStyle -> Directive[Pink , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {{0, 0}, {0, 0}, {0, 0}},

Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

p6 = RegionPlot3D[

x < -1 && y > 1 && z < -1, {x, -6, 6}, {y, -6, 6}, {z, -6, 6},

Boxed -> False ,

PlotStyle -> Directive[Brown , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {{0, 0}, {0, 0}, {0, 0}},

Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

p7 = RegionPlot3D[

x > 1 && y < -1 && z < -1, {x, -6, 6}, {y, -6, 6}, {z, -6, 6},
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Boxed -> False ,

PlotStyle -> Directive[Cyan , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {{0, 0}, {0, 0}, {0, 0}},

Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

p8 = RegionPlot3D[

x < -1 && y < -1 && z < -1, {x, -6, 6}, {y, -6, 6}, {z, -6, 6},

Boxed -> False ,

PlotStyle -> Directive[Magenta , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {{0, 0}, {0, 0}, {0, 0}},

Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

p9 = Show[{ Plot3D[z = 0, {x, -5, 5}, {y, -5, 5}, Mesh -> None ,

AxesOrigin -> {0, 0, 0}, PlotRange -> {-6, 6}],

Graphics3D [{Text["x", Scaled [{-.05, .5, 0}], {0, -1}],

Text["y", Scaled [{.5, -.05, 0}], {0, -1}],

Text["z", Scaled [{.5, .5, 1.1}]]}]} , Boxed -> False ];

points = Graphics3D[

{PointSize [0.00] , Point[{0, 0, 0}]},

Boxed -> False , Axes -> True ,

AxesLabel -> (Style[#, 16] &) /@ {"x", "y", "z"},

AxesOrigin -> {0, 0, 0}, AxesStyle -> Arrowheads [10],

Ticks -> None ,

PlotRange -> 5

];

Show[points , p1 , p2 , p3, p4, p5, p6, p7 , p8]
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Code for Figure 3.11.

SetOptions[Plot ,

BaseStyle -> {FontFamily -> "Times", FontSize -> 14}];

A = Graphics3D [{ Arrowheads[Large], Arrow [{{0, 0, 0}, {8, 0, 0}}],

Text["x", {9, 0, 0}], Arrow [{{0, 0, 0}, {0, 8, 0}}],

Text["y", {0, 9, 0}] ,

Arrow [{{0, 0, 0}, {0, 0, 8}}], Text["z", {0, 0, 9}]} ,

Boxed -> False , AxesEdge -> {{-1, 0}, None , None }];

B = Graphics3D [{ Arrowheads[Tiny], Arrow [{{0, 0, 0}, {-9, 0, 0}}],

Arrow [{{0, 0, 0}, {0, -9, 0}}] ,

Arrow [{{0, 0, 0}, {0, 0, - 9}}]} , Boxed -> False ];

p1 = RegionPlot3D[

x > 1 && y > 1 && z > 1, {x, 0, 6}, {y, 0, 6}, {z, 0,

6}, Boxed -> False ,

PlotStyle -> Directive[Yellow , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {{0, 0}, {0, 0}, {0, 0}},

AxesLabel -> {Style ["x", FontSize -> 16, FontWeight -> Bold],

Style["y", FontSize -> 16, FontWeight -> Bold],

Style["z", FontSize -> 16, FontWeight -> Bold]},

PlotRange -> {{-6, 5}, {-6, 5}, {-6, 5}}, Ticks -> None];

p2 = RegionPlot3D[

x < -1 && y > 1 && z > 1, {x, -6, 0}, {y, 0, 6}, {z, 0, 6},

Boxed -> False , PlotStyle -> Directive[Red , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {{-1, 0}, None , None},

Axes -> True ,

AxesLabel -> {"x", "y", "z"}, Ticks -> None];

p3 = RegionPlot3D[

x < -1 && y < -1 && z > 1, {x, -6, 0}, {y, -6, 0}, {z, 0,

6},

Boxed -> False ,

PlotStyle -> Directive[Pink , Opacity [0.3‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

p4 = RegionPlot3D[

x > 1 && y < -1 && z > 1, {x, 0, 6}, {y, -6, 0}, {z, 0, 6},

Boxed -> False ,

PlotStyle -> Directive[Blue , Opacity [0.3‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

p5 = RegionPlot3D[

x > 1 && y > 1 && z < - 1, {x, 0, 6}, {y, 0, 6}, {z, -6,

0},

Boxed -> False ,

PlotStyle -> Directive[Green , Opacity [0.3‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

116



AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

p6 = RegionPlot3D[

x < -1 && y > 1 && z < - 1, {x, -6, 0}, {y, 0, 6}, {z, -6,

0},

Boxed -> False ,

PlotStyle -> Directive[Brown , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

p7 = RegionPlot3D[

x < -1 && y < -1 && z < - 1, {x, -6, 0}, {y, -6,

0}, {z, -6,

0},

Boxed -> False ,

PlotStyle -> Directive[Magenta , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

p8 = RegionPlot3D[

x > 1 && y < -1 && z < - 1, {x, 0, 6}, {y, -6, 0}, {z, -6, 0},

Boxed -> False , PlotStyle -> Directive[Cyan , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

X =Graphics3D [{

Text[Style["X(d1 ,d2,d2)", FontSize -> 12], {1, 0, 0}, {0, -1}]}];

Y =Graphics3D [{

Text[Style["Y(d1 ,d2,d2)", FontSize -> 12], {0, -1,

0}, {0, -1}]}];

Z =Graphics3D [{

Text[Style["Z(d1 ,d2,d2)", FontSize -> 12], {0, 0, -1}, {-1,

1}]}];

pi1 =Graphics3D [{ PointSize [0.02] , Point[{1, 0, 0}]}];

pi2 =Graphics3D [{ PointSize [0.02] , Point[{0, -1, 0}]}];

pi3 =Graphics3D [{ PointSize [0.02] , Point[ {0, 0, -1}]}];

Show[A, B, p1 , p2 , p3, p4, p5, p6, p7 , p8]
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Code for Figure 3.12.

SetOptions[Plot ,

BaseStyle -> {FontFamily -> "Times", FontSize -> 14}];

A = Graphics3D [{ Arrowheads[Large], Arrow [{{0, 0, 0}, {8, 0, 0}}],

Text["x", {9, 0, 0}], Arrow [{{0, 0, 0}, {0, 8, 0}}],

Text["y", {0, 9, 0}] ,

Arrow [{{0, 0, 0}, {0, 0, 8}}], Text["z", {0, 0, 9}]} ,

Boxed -> False , AxesEdge -> {{-1, 0}, None , None }];

B = Graphics3D [{ Arrowheads[Tiny], Arrow [{{0, 0, 0}, {-9, 0, 0}}],

Arrow [{{0, 0, 0}, {0, -9, 0}}] ,

Arrow [{{0, 0, 0}, {0, 0, - 9}}]} , Boxed -> False ];

p1 = RegionPlot3D[

x > -3 && y > -3 && z > -3, {x, -6, 6}, {y, -6, 6}, {z, -6,

6}, Boxed -> False ,

PlotStyle -> Directive[Yellow , Opacity [0.5‘]],

Mesh -> None , Ticks -> None];

p2 = RegionPlot3D[

x < 3 && y > -3 && z > -3, {x, -6, 6}, {y, -6, 6}, {z, -6,

6},

Boxed -> False , PlotStyle -> Directive[Red , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {{-1, 0}, None , None},

Axes -> True ,

AxesLabel -> {"x", "y", "z"}, Ticks -> None];

p3 = RegionPlot3D[

x < 3 && y < 3 && z > -3, {x, -6, 6}, {y, -6, 6}, {z, -6,

6},

Boxed -> False ,

PlotStyle -> Directive[Pink , Opacity [0.3‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

p4 = RegionPlot3D[

x > -3 && y < 3 && z > -3, {x, -6, 6}, {y, -6, 6}, {z, -6,

6},

Boxed -> False ,

PlotStyle -> Directive[Blue , Opacity [0.3‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

p5 = RegionPlot3D[

x > -3 && y > -3 && z < 3, {x, -6, 6}, {y, -6, 6}, {z, -6,

6},

Boxed -> False ,

PlotStyle -> Directive[Green , Opacity [0.3‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];
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p6 = RegionPlot3D[

x < 3 && y > -3 && z < 3, {x, -6, 6}, {y, -6, 6}, {z, -6,

6},

Boxed -> False ,

PlotStyle -> Directive[Brown , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

p7 = RegionPlot3D[

x < 3 && y < 3 && z < 3, {x, -6, 6}, {y, -6, 6}, {z, -6,

6},

Boxed -> False ,

PlotStyle -> Directive[Magenta , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

p8 = RegionPlot3D[

x > -3 && y < 3 && z < 3, {x, -6, 6}, {y, -6, 6}, {z, -6, 6},

Boxed -> False , PlotStyle -> Directive[Cyan , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

X =Graphics3D [{

Text[Style["X(d1 ,d2,d2)", FontSize -> 12], {1, 0, 0}, {0, -1}]}];

Y =Graphics3D [{

Text[Style["Y(d1 ,d2,d2)", FontSize -> 12], {0, -1,

0}, {0, -1}]}];

Z =Graphics3D [{

Text[Style["Z(d1 ,d2,d2)", FontSize -> 12], {0, 0, -1}, {-1,

1}]}];

pi1 =Graphics3D [{ PointSize [0.02] , Point[{1, 0, 0}]}];

pi2 =Graphics3D [{ PointSize [0.02] , Point[{0, -1, 0}]}];

pi3 =Graphics3D [{ PointSize [0.02] , Point[ {0, 0, -1}]}];

Show[A, B, p1 , p2 , p3, p4, p5, p6, p7 , p8]
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Code for Figure 3.13.

SetOptions[Plot , BaseStyle -> {FontFamily -> "Times", FontSize -> 14}];

A=Graphics3D [{ Arrowheads[Large], Arrow [{{0,0, 0}, {10, 0, 0}}], Text["x",{11,0,0}],

Arrow [{{0,0, 0}, {0,10,0}}], Text["y",{0,11,0}], Arrow [{{0,0, 0}, {0, 0,10}}],

Text["z" ,{0,0,11}]} ,Boxed ->False , AxesEdge -> {{-1,0},None ,None }];

B=Graphics3D [{ Arrowheads[Tiny], Arrow [{{0,0, 0}, {-10, 0, 0}}],

Arrow [{{0,0, 0}, {0,-10,0}}], Arrow [{{0,0, 0}, {0, 0,- 10}}]} ,Boxed ->False ];

p1 = RegionPlot3D[

x > -4 && y > -2 && z > -4, {x, -10, 10}, {y, -10, 10}, {z,-10, 10},

Boxed -> False , PlotStyle -> Directive[Yellow , Opacity [0.5‘]],

Mesh -> None , Ticks -> None];

p2 = RegionPlot3D[

x < 0 && y > 0 && z >0,{x, -10, 10}, {y, -10, 10}, {z, -10, 10},

Boxed -> False , PlotStyle -> Directive[Red , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {{-1, 0}, None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"}, Ticks -> None];

p3 = RegionPlot3D[

x <0 && y < 6 && z > 0, {x,-10, 10}, {y, -10, 10}, {z,-10, 10},

Boxed -> False , PlotStyle -> Directive[Pink , Opacity [0.3‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

p4= RegionPlot3D[

x >0 && y < 0 && z > 0, {x, -10, 10}, {y, -10, 10}, {z, -10, 10},

Boxed -> False , PlotStyle -> Directive[Blue , Opacity [0.3‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

p5 = RegionPlot3D[

x >-3 && y >0 && z < 3, {x, -10, 10}, {y,-10, 10}, {z, -10, 10},

Boxed -> False , PlotStyle -> Directive[Green , Opacity [0.3‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

p6 = RegionPlot3D[

x <0 && y > 0 && z <0, {x,-10, 10}, {y,-10, 10}, {z, -10, 10},

Boxed -> False , PlotStyle -> Directive[Brown , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];

p7 = RegionPlot3D[

x < 0 && y <0 && z < 0, {x, -10, 10}, {y,-10, 10}, {z, -10, 10},

Boxed -> False ,

PlotStyle -> Directive[Magenta , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {None , None , None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Ticks -> None];
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p8 = RegionPlot3D[

x >-4 && y <0 && z <4, {x, -10, 10}, {y, -10, 10}, {z,-10, 10},

Boxed -> False , PlotStyle -> Directive[Cyan , Opacity [0.5‘]],

Mesh -> None , AxesEdge -> {None ,None ,None}, Axes -> True ,

AxesLabel -> {"x", "y", "z"},

Ticks -> None];

Show[A,B,p1,p2,p3 ,p4,p5,p6 ,p7,p8]
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